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Abstract. Canright S-box has been known as the most compact S-box design since its
introduction back in CHES’05. Boyar-Peralta proposed logic-minimization heuristics
that could reduce the gate count of Canright S-box from 120 gates to 113 gates,
however synthesis results did not reflect much improvement. In CHES’15, Ueno et
al. proposed an S-box that has a slightly higher area, but significantly faster than
the previous designs, hence it was the most efficient (measured by area×delay) S-box
implementation to date. In this paper, we propose two new designs for the AES
S-box. One design has a smaller implementation area than both Canright and the
113-gate S-boxes. Hence, our first design is the smallest AES S-box to date, breaking
the 13 years implementation record of Canright. The second design is faster and
smaller than the Ueno S-box. Hence, our second design is both the fastest and
the most efficient S-box design to date. While doing so, we also propose new logic-
minimization heuristics that outperform the previous algorithms of Boyar-Peralta.
Finally, we conduct an exhaustive evaluation of each and every block in the S-box
circuit, using both structural and behavioral HDL modeling, to reach the optimum
synergy between theoretical algorithms and technology-supported optimization tools.
We show that involving the technology-supported CAD tools in the analysis results
in several counter-intuitive results.
Keywords: AES S-box · Composite/Tower Field Arithmetic · Logic-Minimization
Heuristics

1 Introduction
The Advanced Encryption Standard (AES) [FIP01] is a block cipher algorithm that was
adopted by the National Institute of Standards and Technology (NIST) as a replacement
of the Data Encryption Standard (DES) algorithm back in 2001. AES is essentially a
subset of the Rijndael [DR02] algorithm which was the winner of a five-year competition
among fifteen block cipher algorithms. AES works as a substitution-permutation network
with four main operations: SubBytes, ShiftRows, MixColumns, and AddRoundKey. The
SubBytes operation uses the Rijndael S-box which is the main non-linear substitution step
of AES.

The S-box depends on performing an inversion over the GF (28) field of AES, as defined
over the irreducible polynomial (x8 +x4 +x3 +x+ 1), followed by an affine transformation
and addition with a constant. The S-box circuit can be implemented using look-up tables,
or using field arithmetic. The focus of this paper is to implement the AES S-box circuit
using field arithmetic.

Satoh et al. proposed the first tower field inversion using polynomial basis over
GF (((22)2)2) [SMTM01]. This means that an input element from the AES field in GF (28)
is first converted to two elements in polynomial basis (PB) over GF (((22)2)2), where
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the actual inversion happens, then the result is converted back to the AES field GF (28).
Canright implemented tower field inversion using normal basis, instead of polynomial
basis [Can05b]. In Addition, he conducted an exhaustive search through all the subfield
representations (a total of 432 fields) to reduce the overall implementation area. Since
then, the research community has proposed many S-box circuits targeting lower-area,
lower-delay, and/or higher efficiency (measured by area×delay) than Canright S-box.

In the track of lightweight S-boxes, Boyar, Peralta, along with others proposed several
logic-minimization heuristics to reduce the gate count of Canright S-box [BP10, BMP13,
VSP17]. Here, they did not explore substantially different subfields, but they focused on
reducing the number of gates that are needed to implement the Canright circuit itself.
They proposed a reduction in the gate count of the S-box circuit from 120 gates in Canright
circuit to 115 gates in [BP10, BMP13], to 114 gates in [VSP17], and to 113 gates in [Boy16].
This 113-gate design, which was recently used by the CHES’17 ‘bit-sliding’ paper [JMPS17],
is the currently smallest design, as expressed in terms of gate count.

The design of Canright S-box did not target fast application [Can05b]. Hence, the
track of high-speed/higher-efficiency S-boxes received more research focus. [RDJ+01,
JKL10, NNT+10, NNI12, UHS+15] are some papers that fall nicely in this latter category.
Boyar et al. also proposed low-depth circuits for Canright S-box using delay-controlled
logic-minimization heuristics [BP12, BFP17]. It is worth mentioning that the CHES’15
design by Ueno et al. [UHS+15] is the currently fastest and most-efficient S-box design, to
the best of our knowledge.

Canright also proposed a combined S-box/inverse S-box architecture, where one slightly
bigger circuit can be used to compute the S-box output for the AES encryption-path
or the inverse S-box output for the AES decryption-path. This line of research received
little research attention, except for [FWR05, JKL10, AH13] where no significant improve-
ments in the area or delay were proposed. Recently, Reyhani-Masoleh et al. proposed a
combined S-box/inverse S-box architecture over the tower field architecture of Canright
(i.e., GF (((22)2)2)) while using different irreducible polynomials constructing the tower
fields than Canright, and hence redesigning the corresponding internal blocks [RTA18].
The proposed architecture in [RTA18] has a lower space and time complexities than the
Canright combined S-box/inverse S-box scheme. Note that, in this paper, we use the
composite field architecture over GF ((24)2) not the tower field over GF (((22)2)2).

The current trend in designing S-box circuits separates between the theoretical analysis
and the technology-supported CAD tools. In other words, the common design goal of
theoretical analysis is to reduce the gate-count and/or the circuit-depth, both expressed in
indistinctive number of gates, neglecting the fact that logic gates have different implemen-
tation area/delay. In addition, theoretical analysis ignores the availability of compound
gates in almost any technology library (e.g., the OR-AND-Invert gate), which may perform
better in a given circuit. This separation led to many pitfalls as we explain below.

While testing the supposedly most compact S-box circuit (the 113-gate S-box in [Boy16]),
we found that the actual implementation area is, in fact, higher than the original Canright
design, as we detail in Table 12. This was not readily obvious as Canright provided
only behavioral code of the combined S-box/inverse S-box core. We used the equations
to write an S-box-only core, in structural modeling, supported by the space complexity
provided in the report [Can05a] (also in Table 10), and the circuit was indeed smaller than
the 113-gate circuit in [Boy16]. The reason for this counter-intuitive result is that the
optimization goal of Boyar-Peralta is to minimize the multiplicative complexity, expressed
as the number of GF (2) multiplication operations in the circuit. Then, they directly
generated the circuit using the most-commonly used gate for GF (2) multiplication; the
AND gate. However, most of the current CMOS technology libraries (e.g., STM, TSMC
and NanGate) implement an AND gate as a NAND followed by a NOT gate. Hence, AND
gates require higher implementation area and longer delay than the NAND gates that were
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used in the original circuit by Canright. Therefore, the improvement brought by reducing
the number of gates was lost by using more expensive (in terms of area and delay) gates.
In other words, logic gates should not be treated equally in comparing different circuits.

This pitfall was also introduced in the CHES’15 S-box design by Ueno et al. [UHS+15]
(and used in the CHES’16 paper [UMHA16]), and by the low-depth S-box circuits in [BP12]
and [BFP17], where AND gates were extensively used throughout the circuit instead of
the more efficient NAND gates.

Note that the typical use of CAD tools cannot solve this problem as the logic-
minimization algorithms implemented within the CAD tool are lacking what is available in
research. Hence, although the CAD tools will use more efficient gates, the overall circuit
may require a much higher number of gates. In Sec. 8.1, we improve the 113-gate S-box
of [Boy16] to use NAND gates instead of AND gates, resulting in the first S-box circuit to
have an actual lower implementation area than the one proposed by Canright (not just the
gate count), breaking a 13-years implementation record. We also improve the CHES’15
S-box [UHS+15] and the low-depth circuits of [BP12, BFP17].

In order to avoid the aforementioned pitfall, we follow a unique design approach
throughout this paper. We use all the available logic-minimization methods, supported
with Boolean algebra, Karnough maps and De Morgan’s laws to derive optimum circuits for
each block of the S-box circuit. Then, we invoke the CAD tools with behavioral modeling,
under different optimization goals and different levels of circuit-segmentation, to investigate
if the CAD tools can bring any smaller and/or faster circuits. At the end, we hand-pick the
best circuits in each block of the S-box under the two design criteria (lightweight and fast).
While doing so, we also propose several improvements to the underlying logic-minimization
algorithms.

As a result, we propose two new S-box circuits. Our first S-box circuit achieves an
implementation area that is smaller than Canright S-box, the 113-gate S-box, and our
own improved version of these circuits. This lightweight circuit sets a new record for the
implementation area of the AES S-box. Our second circuit achieves higher-speed and higher-
efficiency than the CHES’15 design [UHS+15], the low-depth circuits of [BP12, BFP17],
and our improved versions of [BP12, BFP17]. Our fast circuit has a very similar delay to
the improved version of [UHS+15] (as proposed in this paper), while having a much higher
efficiency.

The rest of the paper is organized as follows. Sec. 2 reviews some mathematical
background about multiplicative inversion using composite field arithmetics. Sec. 3
introduces the overall architecture of the proposed S-box designs. The following two
sections provide details on the underlying blocks within the S-box circuit. The input and
output transformation blocks are discussed in Sec. 4, along with the new logic-minimization
heuristics. The design blocks of the composite field inversion (exponentiation, subfield
inversion, and multipliers) are discussed in Sec. 5. Other plausible design options that we
considered, but did not lead to better results, are discussed in Sec. 6. Further optimization
brought by the technology-supported CAD tools are discussed in Sec. 7. The hardware
results of our designs are introduced in Sec. 8. In this section, we also propose improvements
to the previous contributions and comparison against our designs. We conclude the paper
in Sec. 9.

2 Preliminaries
In this section, we briefly discuss the preliminaries regarding the used finite fields. Specifi-
cally, we talk about different representations used in this paper, namely the polynomial
basis (PB) representation used in the binary field GF (28) and the normal basis (NB)
representation in the composite field GF ((24)2). Let us assume that the input to the
S-box is g, where g is an element in GF (28) generated by the irreducible polynomial
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q(x) = x8 + x4 + x3 + x+ 1. Let α be a root of q(x), then g = (g7, · · · , g1, g0) ∈ GF (28)
is represented in the PB representation as g =

∑7
i=0 giα

i, gi ∈ GF (2), 0 ≤ i ≤ 7, where gi

is the coordinates of g ∈ GF (28). For convenience, these coordinates will be denoted in
vector notation as g = [g7, · · · , g1, g0]tr, where tr denotes the transposition.

2.1 S-box Computation
Let f = (f7, · · · , f1, f0) ∈ GF (28) be the multiplicative inverse (or inverse in short)
of the non-zero S-box input, i.e., f × g = 1, where g 6= 0. Then, the first step in
the S-box computation is to find the inverse f = g−1 for g 6= 0. For g = 0, f = 0. Let
s = (s7, · · · , s1, s0) ∈ GF (28) be the S-box output. Then s = [s7, · · · , s1, s0]tr = Mf⊕h,
i.e.,

s =



s7
s6
s5
s4
s3
s2
s1
s0


=



1 1 1 1 1 0 0 0
0 1 1 1 1 1 0 0
0 0 1 1 1 1 1 0
0 0 0 1 1 1 1 1
1 0 0 0 1 1 1 1
1 1 0 0 0 1 1 1
1 1 1 0 0 0 1 1
1 1 1 1 0 0 0 1





f7
f6
f5
f4
f3
f2
f1
f0


⊕



0
1
1
0
0
0
1
1


, (1)

where M is an affine transformation, h is a constant, and ⊕ is the modulo 2 addition
(XOR).

2.2 Composite Field Inverse in Normal Basis
The implementation of AES S-boxes using composite fields reduces the chip area for the
S-box computation. Two types of composite fields, namely GF (((22)2)2) and GF ((24)2)
are typically used. In this paper, we use the composite field GF ((24)2) which is referred to
as the composite field. We also refer to the GF (((22)2)2) field as the tower field in order
to distinguish it from the composite field GF ((24)2) used in this paper.

In the proposed scheme, we convert the elements to an isomorphic composite field
GF ((24)2). The irreducible polynomial over GF (24), namely

p(y) = y2 + µy + ν = (y + γ)(y + γ16), (2)

is used to construct the composite field. In (2), γ is its root and the subfield elements
µ, ν ∈ GF (24) should be chosen so that this polynomial is irreducible over GF (24).
Then, {γ, γ16} is the normal basis and every element g in GF (28) can be mapped to its
composite field representation over GF (24) as g = Aγ +Bγ16, where A = (a0a1a2a3) and
B = (b0b1b2b3) are subfield elements in GF (24) and ai and bi are their binary coordinates,
respectively. In this paper, the subfield GF (24) is generated using the irreducible all-one-
polynomial (AOP) with degree four, i.e.,

r(t) = t4 + t3 + t2 + t+ 1. (3)

Let β be a root of r(t), i.e., r(β) = 0. Then, we use the type-I optimal normal basis
(ONB-I) {β, β2, β22

, β23} to represent field elements and their efficient computations over
GF (24) [RH03]. Then, any field element A = (a0a1a2a3) ∈ GF (24) can be represented as
A = a0β + a1β

2 + a2β
22 + a3β

23 .
The inverse of g = Aγ + Bγ16 in the composite field GF ((24)2) can be written

as [IT88], [Paa94], g−1 = (gr)−1gr−1, where r = 24×2−1
24−1 = 17. Then, g−1 = (g× g16)−1g16
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Figure 1: The architecture for GF
(
(24)2) inversion using the NB representation at the

inputs and the redundant normal basis (RNB) representation at the outputs.

can be computed as

g−1 = [(Aγ +Bγ16)(Bγ +Aγ16)]−1(Bγ +Aγ16)
= [AB(γ + γ16)2 + (A+B)2γγ16]−1(Bγ +Aγ16)
= EBγ + EAγ16 = Wγ + Zγ16,

(4)

where
E = D−1 = [g17]−1 = [AB(γ + γ16)2 + (A+B)2γγ16]−1, (5)

W = EB ∈ GF (24) and Z = EA ∈ GF (24). Since γ and γ16 are roots of (2), one can
obtain γ + γ16 = µ and γγ16 = ν. Thus, D = g17 ∈ GF (24) in (5) is simplified to

D = ABµ2 + (A+B)2ν. (6)

For simplicity and low complexity implementations, we choose µ = 1 ∈ GF (24) and
then (2) and (6) would respectively become

p(y) = y2 + y + ν = (y + γ)(y + γ16), (7)

and
D = AB + (A+B)2ν. (8)

Figure 1 shows an architecture to implement (8) and (4). Note that the underlying
arithmetic operations in Figure 1, i.e., an addition, a squaring, three multiplications
and multiplication by the constant ν (scaling), are implemented over subfield GF (24).
In [Can05b, Can05a], Canright used the tower field GF ((22)2) and chose µ = 1 for the
normal basis scheme. Then, the same architecture as shown in Figure 1 was derived using
a similar approach.

2.3 Subfield Multiplier
In this paper, we use type-I optimal normal basis (ONB-I) multiplication scheme proposed
in [RH03] over GF (2m) for m = 4. A number of generic multiplication schemes are
proposed in [RH03]. Specifically, we use equation (36) and the corresponding Algorithm 3
from [RH03] for the multiplication over GF (24) generated by the AOP.

Lemma 1. [RH03] Let A = (a0a1a2a3) ∈ GF (24) and B = (b0b1b2b3) ∈ GF (24) be
represented in the ONB-I {β, β2, β22

, β23}. Then, the coordinates of their multiplication,



Arash Reyhani-Masoleh, Mostafa Taha and Doaa Ashmawy 303

Subfield 
Inverter

NAND-XOR

NAND-XOR

10

5

5

10

6

6

8 20

4

6

4

Input 
Transformation

4 4

Exponentiation
Computation

6XOR

10 8

Output 
Transformation

Output 
Multipliers

8(2 )GF

inT
20g

4 2((2 ) )GF

jkA

A

B

jkB

17g

4(2 )GF 4(2 )GF

, jkA A

, jkB B 4 2((2 ) )GF

outT

8(2 )GF

jkE
10fD E

W

Z

g s

4 2((2 ) ) GF Inversion
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i.e., C = AB =
∑3

i=0 ciβ
2i + c4 ∈ GF (24), represented in the redundant normal basis

(RNB) {β, β2, β22
, β23

, 1}, can be calculated as follows:

c0 = a0b0 ⊕ a12b12
c1 = a1b1 ⊕ a23b23
c2 = a2b2 ⊕ a30b30
c3 = a3b3 ⊕ a01b01
c4 = a02b02 ⊕ a13b13,

(9)

where ajk = aj ⊕ ak and bjk = bj ⊕ bk for 0 ≤ j, k ≤ 3, and j 6= k.

We use this multiplier for the two output multipliers and the one at the beginning of
the GF

(
(24)2) inversion in Figure 1.

3 Proposed AES S-box Architecture
The overall architecture of the proposed S-box circuits is highlighted in Figure 2. The input
and output transformation blocks are responsible for converting elements between the
AES binary field GF (28) and the corresponding elements in the composite field GF ((24)2).
The input transformation block accepts an 8-bit element g from the GF (28) field, and
generates two 4-bit field elements A and B, and the mod-2 addition between every two
bits in each of the two elements of A and B, i.e., Ajk and Bjk, where Ajk is a set that
contains aj ⊕ ak, and Bjk contains bj ⊕ bk, both for 0 ≤ j, k ≤ 3, and j 6= k. The output
transformation block accepts the result of the two subfield multipliers; W and Z (5 bits
each, following (9)), and generates the corresponding element s, i.e., the S-box output, in
the AES GF (28) field. More details about generating, optimizing, and implementing the
transformation blocks, targeting lightweight and fast applications, are discussed in Sec. 4.

The composite field inversion is composed of three sub-blocks; the exponentiation block,
the subfield inverter, and the output multipliers. The exponentiation block is responsible
for computing D = g17 as expressed in (8). The subfield inverter accepts g17 and generates
E = (g17)−1. The output multipliers perform the multiplication between (g17)−1 and g16

to represent the output in the redundant normal basis (RNB). The exact circuits that we
use in the implementations of each of these blocks are introduced in Sec. 5.

4 Input and Output Transformations
The conversion between corresponding elements in two different field representations is
realized by a binary transformation matrix. We denote the matrix that is used to convert
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from GF (28) to GF
(
(24)2) as X−1, and the matrix that is used to convert in the other

way around, after its product with M, as MX, where M is the affine transformation in the
S-box. We use the same notation that was used by Canright [Can05b] for less confusion.

The mapping realized by the transformation matrices should preserve additive, as well
as, multiplicative isomorphisms. In other words, addition (or multiplication) between two
elements in one field should be equivalent to mapping the two elements to the new field,
performing the addition (or multiplication) under the laws of that new field, and mapping
the result back to the original field.

In this section, we briefly review how to generate these matrices, along with the
existing logic-minimization algorithms which are used to minimize the number of logic
gates in their implementations. Thereafter, we highlight possible improvements in the
existing logic-minimization algorithms and propose new ones. We conclude this section
with lightweight and fast circuits for the selected input and the corresponding output
transformation matrices.

4.1 Generating Transformation Matrices
A generator φ, as the name implies, can be used to generate all the non-zero field elements
by raising it to a positive integer power φi, i ∈ [0, n−2], where n is the size of the field. Let
φ1 be a generator in the GF (28) field of AES, and φ2 be a generator in the new GF ((24)2)
field that we need to use. An input transformation matrix works if it can map all the
elements φi

1, i ∈ [0, 28 − 2] in GF (28) to φi
2, i ∈ [0, 28 − 2] in GF

(
(24)2). We select φ1

to be φ1 = 00000011 = (03)h [Can05b]. However, in order to select φ2, we need first to
specify ν ∈ GF (24) in (7) and (8), which affects the multiplication rule under this field.

ν is a 4-bit field element in GF (24) chosen so that p(y) = y2 + y + ν is irreducible over
GF (24). Among the 16 possible combinations of ν, only 8 field elements namely ν ∈ {β, β2,
β22 , β23 , 1+β, 1+β2, 1+β22 , 1+β23} can be used. Representing these 8 field elements in
the NB, one can obtain ν ∈ {(1000), (0100), (0010), (0001), (0111), (1011), (1101), (1110)}.
Other values cannot be used as the polynomial p(y) = y2 + y + ν over GF (24) will not be
irreducible. Each value of ν results in a different, but still isomorphic field that we can use.

Each of these fields has several generators. Any generator can be used to build a
transformation matrix that preserves the additive homomorphism. However, in order to
preserve the multiplicative homomorphism, the selected generator must also be a root
of the GF (28) irreducible polynomial q(x) = x8 + x4 + x3 + x + 1, as evaluated under
the arithmetic of the composite field GF

(
(24)2) [Paa94, RDJ+01]. Any generator that

preserves additive and multiplicative homomorphisms can be used to build a transformation
matrix between the AES GF (28) field and the composite field GF ((24)2).

Once such a generator (φ2) is found, the transformation matrix X−1 should fulfill

φi
2 = X−1 × φi

1, i ∈ [0, 254].

After the input transformation matrix is computed, the output transformation matrix
can be found by switching the roles of φ1 and φ2 in the equations above, or by computing
the inverse of the input matrix.

Note that if φ2 is found, its conjugate elements φ2k

2 , k ∈ [1, 7] can also be used to build
other plausible transformation matrices. However, under the composite field arithmetic, if
σ = σhγ

16 +σlγ, then σ16 = σlγ
16 +σhγ, where the high part is simply exchanged with the

lower part. Hence, the higher and lower four rows of the transformation matrices generated
using φ16

2 will be identical to the lower and higher four rows of matrices generated using
φ2, respectively. This means that the circuits used to implement these two cases will be
identical, only the output notations will be different. Therefore, whenever a valid generator
is found, we study its input and output transformation matrices along with the matrices
of the first three conjugate generators φ2k

2 , k ∈ [1, 3]. Hence, there are a total of 8 (values
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of ν) ×4 (generators per field) = 32 unique transformation matrices that could be used.
Then, logic-minimization algorithms should be used to compare the hardware cost in terms
of number of XOR gates of these 32 cases in order to select the smallest one.

4.2 Generating Extended Transformation Matrices
Instead of trying to solve the original 8× 8 matrices, we follow the route used by Boyar
and Peralta [BP10] and add some linear equations from the composite field inverter circuit
into the input and output transformation matrices. This gives more options to consider
for the logic-minimization algorithm and improves the overall design. However, instead
of collecting the linear gates from the implemented circuit, as used by [BP10], we select
the candidate linear equations at the mathematical level. This allows us to run the
logic-minimization algorithm over the extended matrices of all the 32 considered cases,
without having to design the inner circuit at different values of ν.

Since we use the multiplication formulations presented in Lemma 1, one can add the
linear equations for the computation of Ajk = {a01, a02, a03, a12, a13, a23}, and Bjk =
{b01, b02, b03, b12, b13, b23} into the input transformation matrix X−1, resulting in what we
denote as the Tin matrix. Hence, we include 12 extra signals in the logic-minimization
problem to compute Ajk and Bjk. This is an interesting choice as the Ajk and Bjk signals
are also used for the output multipliers, as detailed in Sec. 5.3. Other plausible choices are
discussed in Sec. 6.2 and Sec. 6.3.

Note that the generic mathematical formulations and the corresponding S-box archi-
tecture to generate these 20 bits directly at the input transformation matrix are proposed
for the first time in this paper.

In other words, the Tin of interest computes the 20 bits of:

g20 = [a0a1a2a3b0b1b2b3a01a02a03a12a13a23b01b02b03b12b13b23]tr

from the S-box input vector g = [g7, · · · , g1, g0]tr as follows

g20 = Tin × g, (10)

where Tin is a 20× 8 binary input transformation matrix whose entries are either 0 or 1
depending on the chosen composite field. In fact, the first 8 rows of Tin consists of X−1.
Let us denote the first and the last 4 rows of X−1 as atr

i and btr
i , 0 ≤ i ≤ 3, respectively.

The rows of X−1 generate the coordinates of A and B as ai = atr
i g and bi = btr

i g,
respectively. The next 12 rows of Tin generate aij = ai ⊕ aj = (atr

i ⊕ atr
j )g = atr

ij g and
bij = bi ⊕ bj = (btr

i ⊕ btr
j )g = btr

ij g.
Therefore, one can write Tin as

Tin =

X−1

atr
ij

btr
ij

 for 0 ≤ i, j ≤ 3, i 6= j. (11)

Similarly, at the output, instead of trying to solve the original 8×8 output transformation
matrix MX, we include the equations that are required to convert from the RNB back to
the NB (converting the 5 bits of (9) back to 4 bits) into MX, resulting in what we denote
as the Tout matrix. Hence, the output of the S-box s is

s = Tout × f10 ⊕ h, (12)

where f10 = [w0w1w2w3w4z0z1z2z3z4]tr is the output of composite field inversion, repre-
sented in the RNB and h = [01100011]tr as presented in (1).

Here, we are interested in the logic-minimization of

Tout = MX×T1, (13)
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where T1 is the 8 × 10 matrix that converts from the RNB representations of W =∑3
i=0 wiβ

2i + w4 and Z =
∑3

i=0 ziβ
2i + z4 at the outputs of the GF ((24)2) inverter in

Figure 2 back to the non-redundant NB representations, i.e.,



w0 ⊕ w4
w1 ⊕ w4
w2 ⊕ w4
w3 ⊕ w4
z0 ⊕ z4
z1 ⊕ z4
z2 ⊕ z4
z3 ⊕ z4


= T1× f10 =



1 0 0 0 1 0 0 0 0 0
0 1 0 0 1 0 0 0 0 0
0 0 1 0 1 0 0 0 0 0
0 0 0 1 1 0 0 0 0 0
0 0 0 0 0 1 0 0 0 1
0 0 0 0 0 0 1 0 0 1
0 0 0 0 0 0 0 1 0 1
0 0 0 0 0 0 0 0 1 1


×



w0
w1
w2
w3
w4
z0
z1
z2
z3
z4


. (14)

MX = M ×X is the 8 × 8 output transformation matrix, in which M is the S-box
affine transformation as presented in (1) and X is the inverse of the input transformation
matrix X−1.

Tout is an 8× 10 binary matrix whose entries are either 0 or 1 based on the chosen ν.
The next subsection reviews some of the known logic-minimization algorithms that

could be used to implement these transformation matrices.

4.3 Logic-Minimization Algorithms
The problem of finding the smallest number of gates that is required to implement a
transformation matrix is known as the Shortest Linear Program (SLP) problem. The
SLP problem is defined as: Given a set of linear target equations E over a specific field
F, find the shortest linear program to compute E. Our interest is to find the shortest
linear program that can compute A = Tr×B, where A and B are elements in two different
isomorphic fields and Tr is a generic transformation matrix. This problem is known to be
NP-hard [BMP08, BMP13], and the best solution could only be found by an exhaustive
search over all possible circuits, which quickly becomes infeasible at large input matrices.

4.3.1 Previous Work

Paar proposed a heuristic that works by iteratively selecting the XOR gate which is the
most common in the target equations [Paa94]. The matrix is then appended by adding
one column that represents this gate, and the target equations are updated accordingly.
This gate-selection and matrix-updating continues until there is a single ‘1’ in each row of
the matrix.

Canright used an exhaustive search over all possible solutions [Can05b], as the target
matrices were relatively small (8× 8). In order to manage this time-consuming search, he
searched within a small subset of the tower fields that he studied (only 27 cases out of
the 432 fields). The smallest circuit that was found required 13 XOR gates at the input
matrix X−1 and 11 XOR gates at the output matrix MX of the AES S-box.

Boyar and Peralta showed that the algorithms used by both Canright and Paar are
cancellation-free, where the selected gates must always result in an output with a Hamming
weight that is the addition of the Hamming weights of the inputs [BP10]. Hence, in
these solutions, XOR gates are never used to cancel-out common terms. This means
that the exhaustive search conducted by Canright did not, in principle, exhaust all the
actually possible solutions. Hence, they proposed a new heuristic algorithm that is not
cancellation-free. We denote this algorithm as the Normal-BP heuristic, referring to the
author names. More details about this algorithm is discussed in the next clause.
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Using the Normal-BP heuristic, Boyar and Peralta did not find any smaller imple-
mentation for the matrices used by Canright. As a work around, and being supported
by fast searching algorithms, they included all the linear equations in the inner circuit
of Canright S-box (parts of the tower field inversion circuit) that directly followed the
input matrix X−1 and those that proceeded the output matrix MX into the input and
output transformation matrices, respectively. The new extended-input matrix became
22 × 8 and the new extended-output matrix became 8 × 18. These new matrices are
computationally intractable for the exhaustive search algorithms, and interesting targets
for the fast heuristic-based algorithms. The extended-input matrix directly computes 22
equations at a cost of 23 XOR gates. For comparison, the original Canright circuit would
need 27 gates to solve these equations (13 for the 8 × 8 input matrix X−1 followed by
14 extra gates to solve the 14 extra equations). Similarly, the extended-output matrix
required 30 XOR gates.

Visconti et al. proposed a tweaked algorithm that sometimes works better for dense
matrices [VSP17]. It depends on computing the common path of the target matrix using
its boolean complement, which has a lower density, before applying the regular Normal-BP
heuristic algorithm.

4.3.2 Normal-BP [BP10]

Here, we review the Normal-BP heuristic before proposing several improvements. Normal-
BP heuristic makes use of a distance function δ, which computes the number of XOR
operations that are required to reach from a known set of signals (called the ‘base’ S) to
an output target (one row in the generic Tr matrix). The function δ is computed using
exhaustive search within all signals of the base S. The algorithm maintains a vector Dist
of the distance δ from the known base S to each of the output equations (each row of the
Tr matrix). Assuming the size of Tr matrix is r × c, the number of input signals is c,
while the number of target equations is r which is equivalent to the initial size of Dist.

In the beginning, the base set S includes only the input signals, Si, i ∈ [0, c− 1], where
Si is one input signal in the base S. The Dist vector is initialized to the Hamming weight
of each row minus one, which is indeed the required number of gates if there was no sharing
of gates. Sharing here means that one gate is used for generating two or more different
equations. Then, in each iteration, the algorithm prepares the candidate next gate by
XORing every two signals Si and Sj from the known base S, with i, j ∈ [0, c − 1] and
i 6= j. One of these gates is selected such that if it was added to the base, the new base
would minimize the sum of Dist. If there is a tie between two or more candidate gates,
the program selects the gate that maximizes the Euclidean norm of Dist (

√∑
Dist2i for

i ∈ [0, rd − 1]), with rd being the size of Dist. If there is a further tie after this selection
criteria, the program just selects the first gate in the set of ties. The authors studied
different tie breaking methodologies including: Norm-largest (maximizing the square of
the Euclidean norm minus the largest distance), Norm-diff (maximizing the square of the
Euclidean norm minus the difference of the largest two distances) and Random selection
(try three gates and select the best one). They reported that the tie-breaking methodologies
perform fairly similar.

The algorithm makes use of ‘pre-emptive’ choices, which allows directly picking new
gates as follows: if any two signals in the base Si, Sj are such that Si ⊕ Sj is a target row
in Tr, then the program directly picks this gate as the new base element.

In the next clause, we propose an improved logic-minimization algorithm that we denote
as Improved-BP. We also propose two new logic-minimization methodologies denoted as
Shortest-Dist-First and Focused-Search algorithms.
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4.3.3 Improved-BP (Proposed)

Our first algorithm (Improved-BP) improves the Normal-BP algorithm in three aspects:
1- In each iteration, Normal-BP adds a candidate gate to the base S and evaluates

the new distance Dist, regardless if this new gate leads to ‘pre-emptive’ gates in the next
iteration or not. In fact, if adding a candidate gate would result in ‘pre-emptive’ gates,
these gates will be automatically added in the next iteration. Hence, whenever a candidate
gate leads to ‘pre-emptive’ gates, these gates should also be added to the base S (along
with the candidate gate) before evaluating the Dist vector.

In the proposed Improved-BP algorithm, after adding a candidate gate, we check the
Dist entries. If any of the Dist entries has been changed from 2 to 1, which means that
one target will be found using a ‘pre-emptive’ gate in the next iteration, we add all the
targets that will be resolved with ‘pre-emptive’ gates to the base S and re-evaluate the
Dist vector.

2- The tie-breaking methodologies in the Normal-BP algorithm may not lead to the
best results. In fact, the authors reported that the random selection (best of three random
trials) slightly outperforms all the other tie-breaking methodologies. Meanwhile, it is
computationally intensive to exhaustively test all the ties in different algorithm-runs. In
the proposed Improved-BP algorithm, if there is a tie in one iteration, we test the results
of all the ties in the next iteration and keep only the best sequence of gates. In this way,
we perform only one algorithm-run while monitoring only the best set of gates.

3- We implemented the Improved-BP algorithm while monitoring the delay of each
signal in the base S. In the beginning, the input signals in the base S are associated
with a delay vector, denoted Delay, of all zeros. Adding a new gate Si ⊕ Sj to the base,
its delay is evaluated as max(Delayi, Delayj) + 1, where Delayi is the delay of Si. This
improvement helps in two situations. First, the delay of each target is readily available at
the output, which is an important factor in designing the following circuits, as we detail in
Sec. 5.1. Second, we can find the best circuit at a specified maximum delay. Assuming
that the maximum allowed delay is Dmax, if the delay of any signal in the base S reaches
Dmax, this signal gets removed from the base and no longer used to build any further
target. For this delay-controlled option to work properly, we also modified the δ function
to report the distance, as a number of gates, only if the delay associated with adding these
gates together will not exceed the Dmax. The delay associated with the addition of several
signals is evaluated using the binary tree method where, iteratively, the input signals are
sorted and the two signals with the least delays are added together. Otherwise, the δ
function returns infinity, reporting that there is no path to the target function under the
specified maximum delay.

4.3.4 Shortest-Dist-First (Proposed)

The Shortest-Dist-First algorithm works similarly to the Improved-BP, however, the
methodology of selecting the next gate is different. The Shortest-Dist-First algorithm
selects the gate that maximizes the number Z = sum(Disti = j) at i ∈ [0, rd − 1], with rd

being the size of Dist, for the smallest value of j > 0 such that Z > 0.
In other words, the algorithm selects the gate that results in as many ‘pre-emptive’

gates (with Disti = 1 for i ∈ [0, rd − 1]) as possible. If no such gate was found (Z = 0 at
j = 1), the algorithm searches for the gate that results in as many Disti = 2 (at j = 2) as
possible, and so on. Hence, the algorithm promotes the gates that lead to the shortest
distance.

4.3.5 Focused-Search (Proposed)

This algorithm is similar to the Shortest-Dist-First algorithm, however, it tests all the
gates that result in Z = sum(Disti = j), with i ∈ [0, rd − 1], with rd being the size of
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Dist, for the smallest value of j > 0, being greater than zero. In other words, it tests all
the gates that lead to Disti = 1 for i ∈ [0, rd − 1]. Only if no gates fulfills this criteria, the
algorithm tests all the gates that lead to Disti = 2, and so on.

Another difference is that since this algorithm tests all the candidate gates anyway, we
do not re-evaluate the Dist vector whenever ‘pre-emptive’ gates are found.

This algorithm is the slowest of all. It slightly moves toward being an exhaustive search.

4.4 Searching for Optimum Transformation Matrices

For each of the 32 unique transformation matrices, we applied the logic minimization
algorithms in order to find the set of matrices that results in the minimum overall gate-count.
We solved for the X−1, Tin, and Tout. The results are highlighted in Table 1.

Table 1 serves two main goals. First, it helps in comparing the proposed logic-
minimization algorithms against the current ones. Second, it helps in selecting the best
set of transformation matrices.

Comparing logic-minimization algorithms: First, the table examines the proposed logic-
minimization algorithms against the current state-of-the-art (Normal-BP [BP10]) in 96
different test matrices, ranging in size between 8×8, 20×8 and 8×10. The improvement in
analyzing the 8× 8 X−1 matrices were observable in 8 out of the 32 cases. Our algorithms
outperformed the previous ones by one and sometimes two gates (7% and 13% respectively).
Similarly, analyzing the 20× 8 Tin matrices were improved in 12 cases. In addition, the
8× 10 Tout matrices were improved in 28 cases, by sometimes over 3 gates (15%).

The MATLAB R© computation time in seconds, as measured on a workstation with Intel
Xeon CPU (6 cores at 3.2 GHz) equipped with 16 GB of RAM, is shown in Table 2. The
Improved-BP and Shortest-Dist-First algorithms require higher computation time than the
Normal-BP algorithm because they test all the gates involved in a tie. Counter-intuitively,
the Focused-Search algorithm, which is supposed to be the slowest algorithm, shows the
fastest performance with the 20× 8 matrices, with a slim standard deviation. The reason
is that the search space for the 20× 8 is not large, while the algorithm is relieved from
re-evaluating the Dist vector after adding the ‘pre-emptive’ gates.

The optimum transformation matrices: Table 1 shows that the matrix Tin, which is
used in the input transformation block of Figure 2, always results in smaller circuits, as
compared to the number of gates required for X−1 plus 12 gates. It is noted that these 12
gates are required to compute the 12 extra equations of Ajk and Bjk in Figure 2 if they
were removed from the Tin. Solving Tin was better by 3 to 5 gates.

Table 1 also shows that four of out of 32 possibilities require the optimum value
of 35 XOR gates for both the input (19 XOR gates) and the output (16 XOR gates)
transformation blocks. Among the four optimum results, we chose the one corresponding
to ν = β = (1000). This particular selection will further reduce the complexity of the
exponentiation computation block as explained in the next section.

4.5 The Used Transformation Matrices

Throughout the rest of this paper, we adopt ν = β = (1000) and Gen = (1 + β22)γ + (1 +
β2)γ16 = (11011011) = (DB)h so that the input (X−1) and output (MX) transformation
matrices are as follows.
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Table 1: Logic minimization of the input matrix X−1, the extended-input matrix Tin and
the extended-output Tout transformation matrices.

ν= Gen #1 Gen #2 Gen #3 Gen #4

1000

aGen = (03)h Gen = (6F)h Gen = (6A)h Gen = (DB)h
b13/13/13/-

e39
13/13/13/-

36
14/14/14/-

39
11/11/11/-

35c22/21/21/- 20/20/20/20 21/21/21/- 19/19/19/19
d19/18/18/- 16/16/16/16 19/19/18/- 19/17/17/16

0100

Gen = (06)h Gen = (74)h Gen = (5C)h Gen = (95)h

13/13/13/-
39

13/13/13/-
36

14/14/14/-
39

11/11/11/-
3522/21/21/- 20/20/20/20 21/21/21/- 19/19/19/19

19/18/18/- 16/16/16/16 19/19/18/- 19/17/17/16

0010

Gen = (03)h Gen = (B2)h Gen = (A6)h Gen = (CA)h

13/13/13/-
39

13/13/13/-
36

14/14/14/-
39

11/11/11/-
3522/21/21/- 20/20/20/20 21/21/21/- 19/19/19/19

19/18/18/- 16/16/16/16 19/19/18/- 19/17/17/16

0001

Gen = (06)h Gen = (CF)h Gen = (C5)h Gen = (B7)h

13/13/13/-
39

13/13/13/-
36

14/14/14/-
39

11/11/11/-
3522/21/21/- 20/20/20/20 21/21/21/- 19/19/19/19

19/18/18/- 16/16/16/16 19/19/18/- 19/17/17/16

0111

Gen = (12)h Gen = (7E)h Gen = (2E)h Gen = (9F)h

14/14/14/-
39

13/13/13/-
38

15/13/13/-
39

14/14/13/-
3622/22/22/- 22/21/21/- 21/21/21/- 21/20/20/20

19/18/17/- 18/18/17/- 19/19/18/- 18/17/16/16

1011

Gen = (17)h Gen = (CF)h Gen = (18)h Gen = (7B)h

15/13/13/-
39

14/14/13/-
36

14/14/14/-
39

13/13/13/-
3821/21/21/- 21/20/20/20 22/22/22/- 22/21/21/-

19/19/18/- 18/17/16/16 19/18/17/- 18/18/17/-

1101

Gen = (12)h Gen = (A3)h Gen = (E2)h Gen = (8E)h

14/14/14/-
39

13/13/13/-
38

15/13/13/-
39

14/14/13/-
3622/22/22/- 22/21/21/- 21/21/21/- 21/20/20/20

19/18/17/- 18/18/17/- 19/19/18/- 18/17/16/16

1110

Gen = (17)h Gen = (74)h Gen = (81)h Gen = (59)h

15/13/13/-
39

14/14/13/-
36

14/14/14/-
39

13/13/13/-
3821/21/21/- 21/20/20/20 22/22/22/- 22/21/21/-

19/19/18/- 18/17/16/16 19/18/17/- 18/18/17/-

Each cell contains the following:
a- Gen = is the hexadecimal of the used generator.
b- Gate-count of the input X−1 matrix,
c- Gate-count of the extended input Tin matrix in Figure 2,
d- Gate-count of the extended output Tout matrix in Figure 2,
bcd are minimized using Normal-BP [BP10]/ Improved-BP (Proposed) / Shortest-Dist-First (Proposed) /
Focused-Search (Proposed).
e- The best overall gate count is found by adding the smaller gate-count of (X−1) + 12 or (Tin) to the
gate-count of Tout.
The best case is highlighted in bold. The result ‘-’ means that we did not attempt to solve this case.
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Table 2: The mean and standard deviation of computation time (in seconds) for the
Normal-BP [BP10] against the three proposed logic-minimization algorithms.

Target Matrix X−1(8× 8) Tin(20× 8) Tout(8× 10)
Normal-BP [BP10] (0.215, 0.066) (0.312, 0.115) (2.188, 0.797)

Improved-BP (5.664, 12.096) (0.401, 0.2) (820.587, 1.776e+03)
Shortest-Dist-First (7.05, 6.99) (0.567, 0.438) (636.671, 1.119e+03)
Focused-Search - (0.289, 0.062) (9.563e+03, 1.459e+04)

X−1 =



0 0 0 0 1 1 0 1
0 0 0 0 0 1 0 1
1 1 1 0 0 0 1 1
0 0 1 0 0 0 0 1
0 1 1 1 1 1 0 1
1 0 1 0 0 1 1 1
0 1 0 0 1 1 0 1
1 1 1 1 1 1 0 1


, MX =



0 1 0 0 0 0 0 1
1 1 1 0 1 1 1 0
1 1 0 1 0 1 1 1
1 1 0 0 0 1 1 1
0 0 1 1 0 0 1 0
0 1 1 1 0 0 0 0
0 0 1 0 0 0 0 0
0 1 1 0 0 1 1 1


.

Therefore, the extended-input (Tin) and extended-output (Tout) transformation ma-
trices can be found using (11) and (13) as follows.

g20 =



a0
a1
a2
a3
b0
b1
b2
b3
a01
a02
a03
a12
a13
a23
b01
b02
b03
b12
b13
b23



= Tin × g =



0 0 0 0 1 1 0 1
0 0 0 0 0 1 0 1
1 1 1 0 0 0 1 1
0 0 1 0 0 0 0 1
0 1 1 1 1 1 0 1
1 0 1 0 0 1 1 1
0 1 0 0 1 1 0 1
1 1 1 1 1 1 0 1
0 0 0 0 1 0 0 0
1 1 1 0 1 1 1 0
0 0 1 0 1 1 0 0
1 1 1 0 0 1 1 0
0 0 1 0 0 1 0 0
1 1 0 0 0 0 1 0
1 1 0 1 1 0 1 0
0 0 1 1 0 0 0 0
1 0 0 0 0 0 0 0
1 1 1 0 1 0 1 0
0 1 0 1 1 0 1 0
1 0 1 1 0 0 0 0





g7
g6
g5
g4
g3
g2
g1
g0


, (15)

s =



s7
s6
s5
s4
s3
s2
s1
s0


= (Tout × f10)⊕h =



0 1 0 0 1 0 0 0 1 1
1 1 1 0 1 1 1 1 0 1
1 1 0 1 1 0 1 1 1 1
1 1 0 0 0 0 1 1 1 1
0 0 1 1 0 0 0 1 0 1
0 1 1 1 1 0 0 0 0 0
0 0 1 0 1 0 0 0 0 0
0 1 1 0 0 0 1 1 1 1





w0
w1
w2
w3
w4
z0
z1
z2
z3
z4


⊕



0
1
1
0
0
0
1
1


. (16)

In the following, we propose two sets of circuits to implement these matrices, one for
lightweight applications, and one for fast applications.
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4.6 Lightweight Implementations
For the lightweight implementations, our first goal is to minimize the implementation
area, expressed as the number of used XOR2 (2-input XOR) gates for the transformation
matrices. Whenever two circuits are equivalent in the area, we select the circuit that
results in the lower overall delay.

The lightweight implementation of Tin in (15) for the input transformation block is
presented in Table 3(a). These formulations require 19 XOR2 gates (denoted by ⊕ in the
table). The propagation delay, in terms of number of the XOR2 gate delay (DX), for all
signals are presented (in parentheses). Therefore, the longest delay from the inputs to the
outputs and hence the propagation delay of the input transformation block is 5DX .

The lightweight implementation of the Tout in (16) for the output transformation
block requires 16 gates with a delay of 6 gates (6DX) as presented in Table 3(b). The
computations presented in Table 3(b) perform the operation of (Tout× f10)⊕h altogether,
where XNOR2 gates are sometimes incorporated instead of XOR2 gates to include the
effect of adding the constant h. XNOR2 gates are denoted by � in the table. Note that
the use of XNOR2 gates does not exactly align with the non-zero entries of h, as the
outputs si are reused in other equations. We coded these equations in VHDL and verified
the output with Modelsim R© against the legitimate output of the AES S-box.

Table 3: Lightweight implementation of transformations in Figure 2: (a) Computation of
g20 = Tin×g in (15) for the input transformation. (b) Computation of s = (Tout×f10)⊕h
in (16) for the output transformation.

a0 = a1 ⊕ g3 (2DX) a1 = g2 ⊕ g0 (1DX) a2 = a3 ⊕ a23 (3DX)
a3 = g5 ⊕ g0 (1DX) b0 = b02 ⊕ b2 (4DX) b1 = b2 ⊕ b12 (5DX)
b2 = a0 ⊕ g6 (3DX) b3 = b2 ⊕ b23 (4DX) a01 = g3 (0DX)
a02 = a03 ⊕ a23 (3DX) a03 = a13 ⊕ g3 (2DX) a12 = a13 ⊕ a23 (3DX)
a13 = g5 ⊕ g2 (1DX) a23 = u0 ⊕ g1 (2DX) b01 = b02 ⊕ b12 (5DX)
b02 = g5 ⊕ g4 (1DX) b03 = g7 (0DX) b12 = a02 ⊕ g2 (4DX)
b13 = b23 ⊕ b12 (5DX) b23 = b02 ⊕ g7 (2DX) u0 = g7 ⊕ g6 (1DX)

(a)
s7 = t1 ⊕ t2 (2DX) s6 = t7 ⊕ t6 (6DX) s5 = t0 � t6 (6DX)
s4 = t6 � w2 (6DX) s3 = t4 ⊕ z3 (5DX) s2 = t0 � w1 (3DX)
s1 = w2 � w4 (1DX) s0 = t5 ⊕ t3 (4DX) t0 = s1 ⊕ w3 (2DX)
t1 = w1 ⊕ z4 (1DX) t2 = w4 ⊕ z3 (1DX) t3 = s7 ⊕ z2 (3DX)
t4 = s2 ⊕ t3 (4DX) t5 = s1 ⊕ z1 (2DX) t6 = s0 ⊕ w0 (5DX)
t7 = t2 ⊕ z0 (2DX)

(b)

4.7 Fast Implementations
Our design goal for the fast implementations is to find a circuit with the smallest critical
path delay. Note that the theoretically minimum critical path delay of the transformation
matrices can be known upfront by computing max(dlog2(HW (Tri))e), for i ∈ [0, r − 1]
with HW denoting the Hamming weight function, and Tri is row number i of a generic
transformation matrix (Tin or Tout), and r is the number of rows in the Tr matrix (r = 20
for Tin and r = 8 for Tout). The theoretically minimum critical path delay of both Tin

and Tout is 3DX , as the maximum number of non-zero entries in Tin and Tout is 8.
We used the proposed logic-minimization algorithms while setting the maximum allowed

delay Dmax to 3DX . Therefore, the target of the logic-minimization is to find a plausible
circuit under this delay constraint.
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The corresponding formulations for fast implementation are presented in Table 4. For
the input transformation block Tin, the presented implementation in Table 4(a) requires
24 XOR2 gates with a propagation delay of 3 XOR2 gates (as required). Table 4(b) shows
the formulations to compute the output transformation block Tout in (16) using 21 gates
at a delay of 3DX (as required).

Similarly, some XOR2 gates have been replaced with XNOR2 gates in order to incor-
porate the effect of adding the constant h. The correctness of these formulations were
checked by our codes as will be explained later.

Table 4: Fast implementation of transformations in Figure 2: (a) Computation of g20 =
Tin × g in (15) for the input transformation. (b) Computation of s = (Tout × f10)⊕ h in
(16) for the output transformation.

a0 = a1 ⊕ g3 (2DX) a1 = g2 ⊕ g0 (1DX) a2 = a3 ⊕ a23 (3DX)
a3 = g5 ⊕ g0 (1DX) b0 = u2 ⊕ u4 (3DX) b1 = a1 ⊕ u1 (3DX)
b2 = a0 ⊕ g6 (3DX) b3 = u5 ⊕ u4 (3DX) a01 = g3 (0DX)
a02 = a03 ⊕ a23 (3DX) a03 = a13 ⊕ g3 (2DX) a12 = a13 ⊕ a23 (3DX)
a13 = g5 ⊕ g2 (1DX) a23 = u0 ⊕ g6 (2DX) b01 = u3 ⊕ u5 (3DX)
b02 = g5 ⊕ g4 (1DX) b03 = g7 (0DX) b12 = u2 ⊕ u1 (3DX)
b13 = u2 ⊕ u3 (2DX) b23 = b02 ⊕ g7 (2DX) u0 = g7 ⊕ g1 (1DX)
u1 = u0 ⊕ g5 (2DX) u2 = g6 ⊕ g3 (1DX) u3 = g4 ⊕ g1 (1DX)
u4 = a1 ⊕ b02 (2DX) u5 = u2 ⊕ g7 (2DX)

(a)
s7 = t0 ⊕ t6 (2DX) s6 = t2 ⊕ t10 (3DX) s5 = s7 � t8 (3DX)
s4 = t3 ⊕ t2 (3DX) s3 = t11 ⊕ t12 (2DX) s2 = s1 � t4 (2DX)
s1 = w2 � w4 (1DX) s0 = t5 � t2 (3DX) t0 = w1 ⊕ z4 (1DX)
t1 = z1 ⊕ z2 (1DX) t2 = t0 ⊕ t1 (2DX) t3 = w0 ⊕ z3 (1DX)
t4 = w1 ⊕ w3 (1DX) t5 = w2 ⊕ z3 (1DX) t6 = w4 ⊕ z3 (1DX)
t7 = w0 ⊕ w3 (1DX) t8 = t1 ⊕ t7 (2DX) t9 = w0 ⊕ z0 (1DX)
t10 = s1 ⊕ t9 (2DX) t11 = w2 ⊕ w3 (1DX) t12 = z2 ⊕ z4 (1DX)

(b)

5 Proposed GF ((24)2) Inversion
The GF ((24)2) inversion is the core operation of the proposed S-box, as shown in Figure 2.
The proposed GF ((24)2) inversion consists of three main blocks, namely exponentiation
computation, subfield inverter, and output multipliers. These are explained in this section.

5.1 Exponentiation Computation
Based on the proposed logic-minimization algorithms, we use ν = β = (1000) as discussed
in Sec. 4.4. Thus, the exponentiation computation block in Figure 2 generates

D = g17 = AB + (A+B)2β. (17)

Let A =
∑3

i=0 aiβ
2i = (a0a1a2a3) ∈ GF (24) and B =

∑3
i=0 biβ

2i = (b0b1b2b3) ∈ GF (24)
be represented in the ONB-I {β, β2, β22

, β23}. Then,

(A+B)2β =
3∑

i=0
(ai−1 ⊕ bi−1)β2i+1. (18)
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Since r(β) = 0 in (3), one can find β5 = 1 and so β3 = β23 , β9 = β22 which simplify (18)
to

(A+B)2β = (a3 ⊕ b3)β2 + (a2 ⊕ b2)β22
+ (a0 ⊕ b0)β23

+ (a1 ⊕ b1)× 1. (19)

Since 1 = (1111) ∈ GF (24), one can change the RNB representation of (A+B)2β in (19)
to the corresponding NB as follows:

(A+B)2β = (a1 ⊕ b1)β + (a13 ⊕ b13)β2 + (a12 ⊕ b12)β22
+ (a01 ⊕ b01)β23

. (20)

Substituting (20) and the coordinates of C = AB from Lemma 1 into (17), one obtains

D = d0β + d1β
2 + d2β

22 + d3β
23 = c4β + c4β

2 + c4β
22 + c4β

23+
(c0 ⊕ a1 ⊕ b1)︸ ︷︷ ︸

d̃0

β + (c1 ⊕ a13 ⊕ b13)︸ ︷︷ ︸
d̃1

β2 + (c2 ⊕ a12 ⊕ b12)︸ ︷︷ ︸
d̃2

β22 + (c3 ⊕ a01 ⊕ b01)︸ ︷︷ ︸
d̃3

β23
.

(21)
Let us denote D̃ =

∑3
i=0 d̃iβ

2i ∈ GF (24) such that D = D̃ + c4, where d̃i ∈ GF (2) for
0 ≤ i ≤ 3, is defined in (21). From (21), one can obtain

di = c4 ⊕ d̃i, 0 ≤ i ≤ 3. (22)

To simplify d̃i for 0 ≤ i ≤ 3, one can substitute ci, 0 ≤ i ≤ 3, from (9) into (21) and
simplify them as follows:

d̃0 = (a0b0)⊕ (a12b12)⊕ a1 ⊕ b1
d̃1 = (a1 ∨ b1)⊕ a3 ⊕ b3 ⊕ (a23b23)
d̃2 = (a2 ∨ b2)⊕ a1 ⊕ b1 ⊕ (a03b03)
d̃3 = (a3b3)⊕ (a01 ∨ b01).

(23)

For the simplification of d̃1 from (21) to (23), we use a13 ⊕ b13 = a1 ⊕ b1 ⊕ a3 ⊕ b3
and then (a1b1 ⊕ a1 ⊕ b1) = (a1 ∨ b1), where ∨ represents an OR operation. Similarly, for
the simplification of d̃2 from (21) to (23), we use a12 ⊕ b12 = a2 ⊕ b2 ⊕ a1 ⊕ b1 and then
(a2b2 ⊕ a2 ⊕ b2) = (a2 ∨ b2). Similar property, i.e., (a01b01 ⊕ a01 ⊕ b01) = (a01 ∨ b01), is
used for d̃3.

Our goal is to minimize the chip area in the ASIC implementations. Therefore, we
use NAND and NOR gates instead of AND and OR gates, respectively. This is because
NAND and NOR gates have lower chip area and delay as compared with AND and OR
gates, respectively [WH15]. The coordinate c4 is needed in all four formulations for di,
0 ≤ i ≤ 3, in (22) and so one can implement c4 using two NAND gates and one XOR gate
as c4 = a02b02⊕ a13b13 = (a02b02)′⊕ (a13b13)′, and share it for the four di’s. As a result of
replacing OR gates to NOR gates and AND gates to NAND gates, we may need to change
XOR gates to XNOR in order to keep the same function at the outputs. Therefore, the
following formulations can be obtained from c4 and (23)

d̃0 = (a1 � b1)⊕ (a0b0)′ � (a12b12)′
d̃1 = (a1 ∨ b1)′ ⊕ (a3 � b3)� (a23b23)′
d̃2 = (a1 � b1)⊕ (a2 ∨ b2)′ � (a03b03)′
d̃3 = (a3b3)′ ⊕ (a01 ∨ b01)′
c4 = (a02b02)′ ⊕ (a13b13)′,

(24)

where an XNOR operation of two inputs (XNOR2) is denoted by a1 � b1 = a1 ⊕ b1 ⊕ 1 =
(a1 ⊕ b1)′. In (24), having two XNOR operations for d̃0, d̃1 and d̃2 do not change their
functions as x� y � z = x⊕ y ⊕ 1⊕ z ⊕ 1 = x⊕ y ⊕ z.

Note that each of the equations that generate d̃0, d̃1 and d̃2 consists of mod-2 additions
between three terms (using XOR and XNOR). The order of implementing these three
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Figure 3: The proposed exponentiation computation block for the S-box architecture.
(a) For the proposed lightweight S-box implementation (b) For the proposed fast S-box
implementation. Note that the order of additions (XOR/XNOR) that generate d1 is
different between two circuits.

mod-2 additions affects the overall delay of the circuit. The proper order of additions
should be selected based on the delay associated with the input terms, which eventually
depends on the delay of the Tin block. Here, we use the delay associated with each signal
of the Tin block, as detailed in Table 3 for the lightweight implementation and in Table 4
for the fast implementation.

Therefore, we propose two implementations of the exponentiation computation block,
as shown in Figure 3, one for the lightweight implementation highlighted in Figure 3(a)
and one for the fast implementation highlighted in Figure 3(b). Both implementations
have the same space complexity. In each figure, we highlight the delay associated with all
the input and output signals in parentheses.

Figure 3(a) shows that the optimum circuit for the lightweight implementation generates
all the di output signals with a maximum total delay of 8DX , where DX is the delay of
one XOR2/XNOR2 gate. This result takes into account that the delay of XOR gate is
slightly higher than the delay of a NAND gate. Similarly, Figure 3(b) shows that the
highest delay of the fast implementation is 6DX + 1DNOR, taking into account that the
delay of NOR gate is slightly higher than NAND gate.

Based on Figure 3 and equations (22) and (24), one can find the space and time
complexities of the proposed exponentiation computation blocks as follows. Note that the
XNOR gate that generates (a1 � b1) can be shared.

Proposition 1. The exponentiation computation block consists of 14 XOR2/XNOR2
(2-input XOR/XNOR), 7 NAND2 (2-input NAND), and 3 NOR2 (2-input NOR) gates
with the critical path delay of 4DX , where DX is the delay of one XOR2/XNOR2 gate.
This exponentiation block adds 3DX and 3DX + 1DNOR to the critical path delay of the
lightweight and fast input transformation matrices, respectively, where DNOR is the delay
of one NOR2 gate.
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Figure 4: The proposed subfield inverter block over GF (24) to generate ei, 0 ≤ i ≤ 3, for
E =

∑3
i=0 eiβ

2i = D−1, where D =
∑3

i=0 diβ
2i and the additions in the input indices are

performed modulo 4. Note that d̃i, 0 ≤ i ≤ 3 are the signals from Figure 3 that generate
di = c4 + d̃i.

5.2 Subfield Inverter
A large number of multiplicative inverse architectures over binary fields are available in
the literature. In [WTS+85] and [Fen89], sequential architectures for computing inverse
over GF (2m) are proposed. The inverse architectures proposed in those papers are costly
as they require a NB multiplier and compute the inverse operation in a number of clock
cycles. On the other hands, for a fast computation operation, one can compute the inverse
as a bit-parallel architecture in composite fields [Paa94]. In [Can05b, Can05a, NNT+10],
efficient subfield inverter over tower fields GF ((22)2) are proposed. However, similar to
the schemes proposed in [UHS+15, NNI12], our inverter is over GF (24). The subfield
inverter schemes presented in [UHS+15, NNI12] use the RNB and the polynomial ring
representation (PRR) with 5-bit coordinates, whereas our inverter scheme uses the NB
(with 4-bit coordinates).

The subfield inverter block of Figure 2 generates the inverse of its input D =
(d0d1d2d3) =

∑3
i=0 diβ

2i over GF (24). Let us denote E = D−1 ∈ GF (24) as the output
of this block. Let ei ∈ GF (2), be the ith, 0 ≤ i ≤ 3, binary coordinate of E represented
with respect to the ONB-I, i.e., E = (e0e1e2e3) =

∑3
i=0 eiβ

2i

. Then, one can obtain ei as
follows.

Lemma 2.
ei = di+1d

′
i+2(di ⊕ di+3) ∨ di+2(d′i ∨ di+3), 0 ≤ i ≤ 3, (25)

where the additions in the indices are performed modulo 4.

The proof of Lemma 2 is provided in Appendix A.
In order to reduce the delay of (25), we use (d̃i ⊕ d̃i+3) instead of (di ⊕ di+3) as

di⊕ di+3 = c4⊕ d̃i⊕ c4⊕ d̃i+3 = (d̃i⊕ d̃i+3). Also, in order to reduce the area and improve
the speed of the ASIC implementations of (25), we use NAND and NOR gates instead of
AND and OR gates, respectively. So, we use De Morgan’s law for (d′i ∨ di+3) = (did

′
i+3)′

and change two levels of AND-OR to its equivalent NAND-NAND implementation. As a
result, we conclude the formulation presented in (25) to the following:

Corollary 1. Let D = (d0d1d2d3) =
∑3

i=0 diβ
2i be the input of the subfield inverter.

Then, the coordinates of the inverse output E = (e0e1e2e3) = D−1 can be found as

ei = ((di+1d
′
i+2(d̃i ⊕ d̃i+3))′((did

′
i+3)′di+2)′)′, 0 ≤ i ≤ 3, (26)

where the additions in the indices are performed modulo 4.
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Based on the architecture shown in Figure 4 for one ei, the space and time complexities
of the entire subfield inverter (ei, 0 ≤ i ≤ 3,) are as follows. Note that the four NOT gates
can be shared among the four ei outputs.

Proposition 2. The space complexity of the proposed subfield inverter block over GF (24)
includes 12 NAND2, 4 NAND3, 4 XOR2 and 4 NOT gates, where NAND2, and NAND3
are, respectively, a 2-input and a 3-input NAND gates and XOR2 is a 2-input XOR gate.
The time complexity due to gates for the proposed subfield inverter is 3DND +DNT , where
DND and DNT are the delays of a NAND2 and a NOT gate, respectively.

5.3 Output Multipliers
The two output multipliers that are shown in Figure 1 generate W = EB ∈ GF (24) and
Z = EA ∈ GF (24) (see (4)). The output of these multipliers are represented in the
RNB {β, β2, β22

, β23
, 1}, whereas their inputs A =

∑3
i=0 aiβ

2i = (a0a1a2a3) ∈ GF (24),
B =

∑3
i=0 biβ

2i = (b0b1b2b3) ∈ GF (24), and E =
∑3

i=0 eiβ
2i = (e0e1e2e3) are represented

in the ONB-I {β, β2, β22
, β23}. Let W = (w0w1w2w3w4) =

∑3
i=0 wiβ

2i + w4 and Z =
(z0z1z2z3z4) =

∑3
i=0 ziβ

2i + z4 be the outputs of these multipliers. The formulations to
generate wi and zi can be obtained from (9). They can be realized using two levels of
NAND-XOR gates as follows.

w0 = (e0b0)′ ⊕ (e12b12)′
w1 = (e1b1)′ ⊕ (e23b23)′
w2 = (e2b2)′ ⊕ (e30b30)′
w3 = (e3b3)′ ⊕ (e01b01)′
w4 = (e02b02)′ ⊕ (e13b13)′,

(27)

z0 = (e0a0)′ ⊕ (e12a12)′
z1 = (e1a1)′ ⊕ (e23a23)′
z2 = (e2a2)′ ⊕ (e30a30)′
z3 = (e3a3)′ ⊕ (e01a01)′
z4 = (e02a02)′ ⊕ (e13a13)′,

(28)

where ejk = ej ⊕ ek for 0 ≤ j, k ≤ 3, j 6= k and E = (e0e1e2e3) is the shared input.
Note that Ejk = {e01, e02, e03, e12, e13, e23} are shared between the two multipliers and are
generated using six 2-input XOR gates, denoted as the 6XOR block in Figure 2. These
signals are used in (27) and (28) which are implemented by 10 NAND-XOR modules.
These modules are shown by the two blocks of NAND-XOR in Figure 2 to implement (27)
and (28). The details of the NAND-XOR blocks in Figure 2 are shown in Figure 5.

Based on the architecture shown in Figure 2 and Figure 5, the space and time com-
plexities of the output multipliers are as follows.

Proposition 3. The output multipliers in Figure 2 consists of 16 XOR2 and 20 NAND2
gates with longest propagation delay of DND + 2DX .

5.4 Complexity Analysis
The space and time complexities of the input and output transformation blocks, along
with all the blocks presented in Propositions 1, 2, and 3 are summarized in Table 5. This
table also shows the space and time complexities of the GF ((24)2) inversion and the entire
AES S-box architecture shown in Figure 2 for lightweight and fast implementations. The
corresponding gate equivalent (GE) of all the blocks are also presented. GE is the chip
areas in terms of an equivalent 2-input NAND gates. The provided GEs are based on 65 nm
CMOS technology in which the areas of XOR2/XNOR2 gate=2 GEs, 2-input NAND gate
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Figure 5: The proposed output multipliers over GF (24) to generate wi/zi, 0 ≤ i ≤ 3, and
w4/z4. Note that the additions in the input indices are performed modulo 4.

(NAND2)=1 GE, 3-input NAND gate (NAND3)=1.25 GEs, 2-input NOR gate (NOR2)=1
GE, and a NOT gate=0.75 GEs.

Table 5: Space and time complexities for different blocks and the GF ((24)2) inversion of the
entire proposed S-box architecture shown in Figure 2 (X=XOR2/XNOR2, ND=NAND2,
N3=NAND3, NR=NOR2, NT=NOT, 1X= 2GEs, 1ND=1NR= 1GE, 1N3= 1.25GEs,
1NT= 0.75GEs).

Block/ Space Complexity Time
Target X ND N3 NR NT GE Complexity

Input Transformation Block
Lightweight 19 38 5DX

Fast 24 48 3DX

GF ((24)2) Inversion
Exp. Light. 14 7 3 38 4DX

Exp. Fast 14 7 3 38 3DX + 1DNR

Inverter 4 12 4 4 28 3DND + 1DNT

Multipliers 16 20 52 2DX + 1DND

Total Light. 34 39 4 3 4 118 6DX + 4DND + 1DNT

Total Fast 34 39 4 3 4 118 5DX + 4DND + 1DNT + 1DNR

Input Transformation Block cascaded with the GF ((24)2) Inversion
Lightweight 53 39 4 3 4 156 10DX

1 + 4DND + 1DNT

Fast 58 39 4 3 4 166 8DX + 4DND + 1DNT + 1DNR

Output Transformation Block
Lightweight 16 32 6DX

Fast 21 42 3DX

Total Complexity of Proposed S-box (Figure 2)
Lightweight 69 39 4 3 4 188 16DX + 4DND + 1DNT

Fast 79 39 4 3 4 208 11DX + 4DND + 1DNT + 1DNR
1 One DX can be saved by incorporating the delay of the input transformation block in selecting the order
of mod-2 additions within the exponentiation block.
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6 Our Investigations for the Best Choices
We highlight that the aforementioned schemes are proposed as a result of extensive
investigation considering many other design options. In this section, we discuss some of
the design choices that we explored and how the proposed schemes were selected.

6.1 Different Bases and the Corresponding Multipliers
There are three multipliers that are used within the architecture of composite field inversion.
Therefore, choosing an appropriate multiplier plays an important role in overall cost of
the circuit. The three multipliers, as seen in Figure 1, process three subfield elements,
namely A, B, and E as their inputs. In other words, each input field element activates
two multipliers. Here, we are interested in pre-processing the input elements in a way that
can minimize some of the internal circuits of the two activated multipliers. In other words,
instead of minimizing the cost of individual multipliers, we try to minimize the combined
cost of the three multipliers.

Table 6 shows details of the multipliers used in a number of S-boxes. We derived the
space and time complexities of these multipliers based on the circuits and information
provided in these papers. As shown in the table, the multipliers can be designed upon
three different types of bases; polynomial basis (PB), normal basis (NB) and mixed basis
(MB), and are built using a set of AND/NAND and XOR/XNOR gates.

Table 6: Multipliers used in different AES S-boxes with their sharing capability between
different multipliers (X=XOR, ND=NAND, AD=AND).

S-box Multiplier # inputs/ Space Time Sharing
# outputs Complexity Complexity Inputs

Subfield GF ((22)2)
Satoh et al. [SMTM01] PB [Paa96] 4× 4/4 21X+9AD 4DX +DAD both
Canright [Can05b] NB 4× 4/4 20X+9ND 4DX +DND both

Nogami et al. [NNT+10] MB 4× 4/4 21X+9AD 4DX +DAD both
Subfield GF (24)

Rudra et al. [RDJ+01] PB [Mas91] 4× 4/4 15X+16AD 3DX +DAD one
Gueron et al. [GM16] PB 4× 4/4 15X+16ND 3DX +DND none
Nekado et al.[NNI12] RNB 5× 5/5 25X+10AD 2DX +DAD both
Ueno et al. [UHS+15] RNB [NNI12] 4× 5/5 21X+10AD 2DX +DAD both

This work NB [RH03] 4× 4/5 17X+10ND 2DX +DND both

Assume that the input E with coordinates of ej , 0 ≤ j ≤ 3, is connected to two
multipliers, generating the outputs AE and BE (see for example, the output multipliers
in Figure 1). If the two inputs of each multiplier are first processed through a set of
AND/NAND gates, no gate sharing can happen between the multipliers. This is because,
the set of gates in the first multiplier (with inputs A and E) will generate aiej , with
0 ≤ i, j ≤ 3, while the set in the second multiplier (with inputs B and E) will generate
biej , with 0 ≤ i, j ≤ 3. It is clear that the signals in these two sets do not match, hence no
sharing can happen. Such a multiplier was used in [RH04], [KS98], [RH02], [MO86], and
recently in [GM16] while preventing sub-expression sharing between the multipliers. Hence,
although the hardware cost of an individual multiplier may be small, the combined cost of
the three multipliers will be high. As a result, these multipliers are not good candidates
for our objective.

The Mastrovito multiplier [Mas91], which is used in the scheme proposed by Rudra et
al. [RDJ+01], uses a set of AND gates between the bits of one input and a set of XOR
gates between the bits of the other input. As mentioned in [RDJ+01], no optimization
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has been performed in their scheme. However, sharing can only happen if the architecture
uses the input connected to the set of XOR gates as the common input between the two
multipliers, i.e., E in the multipliers with outputs AE and BE. Therefore, no sharing in
the other inputs (A or B) can be used.

On the other hand, the maximum sharing can be utilized if each input is first processed
through a set of XOR/XNOR gates between its bits, independently, as a pre-processing
step. For example, the set in the first multiplier (with inputs A and E) will generate
ai ⊕ aj , with 0 ≤ i, j ≤ 3, i 6= j, and ei ⊕ ej , with 0 ≤ i, j ≤ 3, i 6= j. The set in the second
multiplier (with inputs B and E) will generate bi ⊕ bj , with 0 ≤ i, j ≤ 3, i 6= j, and ei ⊕ ej ,
with 0 ≤ i, j ≤ 3, i 6= j. Here, the six gates ei ⊕ ej , with 0 ≤ i, j ≤ 3, i 6= j are common in
the two multipliers, and can be shared. Such multipliers are used in the schemes proposed
by Canright [Can05a, Can05b] and Nogami et al. [NNT+10]. These multipliers are similar
to the Karatsuba multiplier [KO63] and are good candidates in terms of sharing. However,
using them results in a long delay which is not favorable for our fast objective.

In [NNI12], Nekado et al. presented a fast RNB multiplier with subexpresion sharing
in both multiplier inputs. The multiplier uses the RNB representation for the ONE-I over
GF (24) generated by the AOP. Both inputs and the output of this multiplier have 5 bits
(denoted by 5×5/5 in Table 6). This multiplier requires 25 XOR2 and 10 AND2 gates with
delay of 2DX +DAD. Recently, Ueno et al. [UHS+15] used the RNB multiplier proposed
in [NNI12] for the RNB multiplications, where one input has a 4-bit representation while
the other input and the output are represented in the RNB with 5 bits (denoted by 4× 5/5
in Table 6). This multiplier reduces the number of XOR gates to 21 with the same number
of 10 AND2 gates and the delay of 2DX +DAD.

In this paper, we use the NB multiplier proposed in [RH03] for the ONE-I over GF (24)
generated by the AOP. Both inputs of this multiplier are represented in the NB, and we
chose to represent the output in the 5-bit RNB representation. The original formulations
in [RH03] for this multiplier were based on AND-XOR implementations. However, we
improved this multiplier by using NAND gates instead of AND gates. This modification
improves both the lightweight and fast implementations as the chip area and delay of
NAND gates are lower than those of AND gates. As seen from Table 6, the multiplier
that we use in this paper has the lowest gate count and the smallest delay available in the
literature to the best of our knowledge.

6.2 Different Input Transformation Matrices
In our proposed scheme for the lightweight S-box architecture (shown in Figure 2), the
proposed input transformation matrix Tin is selected to be 20× 8 (see the input transfor-
mation matrix Tin presented in (15)). We investigated additional choices for the input
transformation matrices with a corresponding slight modification in the exponentiation
block in order to obtain smaller overall space/time complexity. In the following items, we
detail our investigations for different input transformation matrices in which 2, 3, and 4
new rows are appended to the existing 20× 8 binary matrix Tin. Note that we already
considered the traditional 8× 8 binary input matrix in Table 1.

• An appended 22 × 8 input matrix: Since our exponentiation computation block
(Figure 3) uses a1 ⊕ b1 and a3 ⊕ b3 as inputs, we considered moving the computation
of one (or both) of these two formulations into the Tin matrix. The results of our
code showed that we need an extra one gate (or respectively two gates) in the input
transformation block. This means that no saving was obtained, while increasing the
computation time of the logic-minimization algorithms.

• An appended 23 × 8 input matrix: One can derive another set of formulations for
D = (A + B)2β + AB using (19) for (A + B)2β with the addition to C = AB
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presented in Lemma 1. The resultant new formulations for D require (a0 ⊕ b0),
(a1 ⊕ b1) and (a3 ⊕ b3) in the exponentiation computation block. To consider this,
we added 3 additional rows to compute (a0 ⊕ b0), (a1 ⊕ b1) and (a3 ⊕ b3) to the Tin

matrix. This added three more XOR gates to the space complexity and hence, no
improvement was found.

• An appended 24 × 8 input matrix: Similarly, using (20), we found another set of
formulations for D in which (a1 ⊕ b1), (a13 ⊕ b13), (a12 ⊕ b12) and (a01 ⊕ b01) are
used. Similarly, we added 4 new rows (in order to compute these signals) to the
existing Tin matrix and no improvement in terms of space complexity was obtained.

• A faster 20× 8 input matrix : We searched for a faster input transformation block to
reduce its propagation delay from 3DX to 2DX . In fact, we searched for an input
transformation matrix Tin with at most four 1s in all the 20 rows of the matrix and
we could not find any such a matrix.

6.3 Different Output Transformation Matrices
Similarly, we considered several other revised output transformation matrices with slight
modifications to the output multipliers in Figure 2. The content and the size of the existing
8× 10 binary matrix Tout were revised. The size of the first output matrix was reduced
to 8× 8, whereas the size of the second and the third output matrices were increased to
8× 20 and 8× 10, respectively. These investigations are detailed as follows.

• A revised 8× 8 output matrix: The output subfield elements W = (w0w1w2w3w4)
and Z = (z0z1z2z3z4) of the proposed S-box are represented in the 5-bit RNB of
W =

∑3
i=0 wiβ

2i + w4 and Z =
∑3

i=0 ziβ
2i + z4. By adding 8 XOR gates at the

outputs of the GF ((24)2) inversion block, one can obtain the representation of the
outputs with respect to the NB asW =

∑3
i=0(wi⊕w4)β2i and Z =

∑3
i=0(zi⊕z4)β2i

using T1 in (14). Adding these 8 XOR gates to the result of optimizing the 8× 8
output binary matrix MX, we found that our 8× 10 Tout = MXT1 has a smaller
area.

• A revised 8× 20 output matrix : The very last stage in the output multipliers before
generating W and Z consists of 10 XOR gates. We moved these gates to the output
transformation matrix Tout so that the new output matrix has 20 columns (double
the original one). The result of optimizing this matrix was worse than the 8× 10
matrix while significantly increasing the computation time.

• A faster 8× 10 output matrix: The current output transformation matrix Tout in
(16) has at most eight 1s in each row. Our current fast implementation of the output
transformation block has 3DX and to make it faster, we have to find a matrix with
at most four 1s in all rows. We searched for such a matrix across all composite field
representations and we could not find any matrix with this criteria.

6.4 Different Subfield Inverters
In addition to the subfield inverter that was selected in Subsection 5.2, we derived 11 other
equivalent functions using Boolean algebra and Karnough maps. In order to select the best
circuits in the two design goals (area and speed), we coded all the 12 functions in VHDL
and evaluated their ASIC implementation results. The functions and the corresponding
ASIC implementation results are provided in Appendix B. Based on the hardware results,
the circuit presented in Sec. 5.2 was the best in both area and delay.

Moreover, instead of designing the subfield inverter as a 4 inputs/4 outputs circuit, we
tested the following choices:
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1. 4 inputs/10 outputs: The 4 inputs are d0, d1, d2, d3 and the 10 outputs are e0, e1, e2,
e3, e01, e02, e03, e12, e13, e23 . In this design, the six 2-input XOR gates used in the
output multipliers to derive e01, e02, e03, e12, e13, e23 can be shared with the subfield
inverter, suggesting a saving of 12 GEs with reducing 1DX delay.

2. 5 inputs/4 outputs: The 5 inputs are d̃0, d̃1, d̃2, d̃3, c4 and the 4 outputs are e0, e1, e2,
e3. Based on this design, the four 2-input XOR gates used to derive d0, d1, d2, d3
from d̃0, d̃1, d̃2, d̃3, c4 are no longer needed, suggesting a saving of 8 GEs and reducing
1DX delay.

3. 5 inputs/10 outputs: The 5 inputs are d̃0, d̃1, d̃2, d̃3, c4 and the 10 outputs are
e0, e1, e2, e3, e01, e02, e03, e12, e13, e23. This design suggests a saving of ten 2-input
XOR gates, a total of 20 GEs with reducing 2DX delay.

The truth table for each new design is used as the design entry method to Logic
Friday R© [Ric12]. Logic Friday is then used to minimize the logic expressions for the outputs
and VHDL is used for coding. The ASIC implementation results show no improvement in
the speed of these cases compared to the 4 inputs/4 outputs circuit. The overall gate count
of the GF ((24)2) inversion circuit using choices #1, #2 and #3 turns out to be 12, 8 and
20 GEs, respectively, more than the gate count of the subfield inverter using 4 inputs/4
outputs. The delay did not improve as a result of using a new number of inputs and/or
outputs for the subfield inverter, suggesting the use of the 4 inputs/4 outputs circuit in
the final design.

7 Further Optimizations Using CAD Tools
This section complements the extensive investigation started in the previous section, while
using technology-supported CAD tools. In order to avoid the pitfall discussed in the
introduction, we invoke CAD tools with behavioral modeling to see if the design block
could be further optimized using compound/complex gates, in terms of both area and
delay.

To achieve this goal, we coded every block within the S-box architecture, separately
and combined, using both structural and behavioral modeling of VHDL. In behavioral
modeling, we define the circuits based on their input-output relationship (their behavior),
and let the CAD tool selects the best implementation based on the available gates in
a target library. In the previous section, we used structural modeling where we define
the exact gates and circuit structure based on formulations, with no optimization in the
gate selection by the CAD tool. Then, we compared the ASIC implementation results
of the behavioral modeling against the structural modeling. The results are shown in
Table 7 and Table 8 in terms of area (in both µm2 and GE values), delay (in ns) and
power (in µW ). For all the ASIC synthesis results presented in this paper, we used the
relaxed constraints at a clock frequency of 100 MHz. The gate equivalent (GE) values
are calculated by dividing the corresponding area by the area of a 2-input NAND gate,
i.e., 2.08 µm2. Table 7 shows references to the figures (for structural modeling) and the
equations (for behavioral modeling) that are used in the comparison.

7.1 Behavioral Modeling of the Composite Field Inversion
Here, we study the blocks used within the composite field inversion; the exponentiation
block, the subfield inverter block, and the output multipliers block. Then, we conclude
with the overall architecture of the composite field inversion.

For the structural modeling of the exponentiation computation block, we evaluated
two circuits; Figure 3(a), denoted as Code#1 and Figure 3(b), denoted as Code#2.
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Table 7: ASIC synthesis results for three blocks of the GF ((24)2) inversion and the entire
GF ((24)2) inversion.

Block Code Imp. Fig. Area Delay Power
# Equ. (#) µm2 GE ns µW

Expon.1
1 Str. Light. Fig. 3(a) 62.4 30 0.10250 2.600
2 Str. Fast Fig. 3(b) 62.4 30 0.09072 2.479
3 Beh.2 (24) 60.84 29.25 0.10037 1.851

Subfield 4 Str. Fig. 4 74.88 36 0.12131 3.836
Inverter1 5 Beh.3 (22), (26) 64.48 31 0.10244 3.257
Output 6 Str. Fig. 5 108.16 52 0.09892 4.096
Mults. 7 Beh. (27), (28) 111.28 53.5 0.12088 4.327

Behavioral coding of three blocks
Module Codes

8 All-Str. Light. 1 and 3 1, 4, 6 245.44 118 0.41705 25.132
9 All-Str. Fast 1 and 3 2, 4, 6 245.44 118 0.40527 25.012

GF ((24)2) 10 All-Beh. 3 3, 5, 7 236.6 113.75 0.49576 23.996
inversion 11 All-Beh. 1 249.6 120 0.46065 24.274

12 Comb. Light. 3 3, 5, 6 233.48 112.25 0.49863 23.554
13 Comb. Light. 1 240.24 115.5 0.47017 23.868
14 Comb. Fast 1 and 3 2, 5, 6 235.04 113 0.43682 23.955

1 The four XOR gates at the output of exponentiation computation block in Figure 3 are moved to the
subfield inverter in Figure 4 for accurate delay comparison.
2 See Figure 6(a) for the behavioral-modeling architecture of the exponentiation block.
3 See Figure 6(b) for the behavioral-modeling architecture of the subfield inverter block.

While evaluating these two circuits, we moved the four XOR gates at the output of the
exponentiation computation block in Figure 3 to the input of the subfield inverter block
in Figure 4 in order to achieve accurate delay comparison. For the behavioral coding of
the exponentiation block, we coded the formulations provided in (24), and denoted the
circuit as Code#3. The results show that our fast circuit (Code#2 of Figure 3(b)) is truly
the fastest circuit. However, the behavioral modeling brought a slightly smaller circuit by
using 3-input XOR gates instead of two 2-input XOR gates. Figure 6(a) shows the circuit
generated using behavioral modeling of the exponentiation block.

Similarly, we evaluated the subfield inverter using structural modeling of Figure 4
(denoted Code#4), and behavioral modeling of (22) and (26) (denoted Code#5). The
behavioral modeling presented a circuit that is smaller and faster than Figure 4 by using
the non-obvious OAI32 (OR-AND-Invert) compound gate as a replacement of the NAND-
NAND at the output of Figure 4. Figure 6(b) shows the circuit generated from the
behavioral modeling of the subfield inverter. Using some Boolean algebra and De Morgan’s
laws, one can show that Figure 4 is equivalent to Figure 6(b).

For the output multipliers, we evaluated the structural modeling of Figure 5 (denoted
Code#6), and the behavioral modeling of (27) and (28) (denoted Code#7). Here, the
proposed circuit in Figure 5 (Code#6) outperforms the behavioral modeling in both area
and delay.

Table 7 also shows the options we investigated in building the overall composite
field inversion. We chose 5 different combinations of the evaluated codes from the three
blocks of the GF ((24)2) inversion. Codes#(1,4,6) combines all the structural modeling
for a lightweight design. Codes#(2,4,6) combines all the structural modeling for a fast
design. Codes#(3,5,7) combines all the behavioral modeling. Then, we combined the
most lightweight codes; Codes#(3,5,6), and the fastest codes; Codes#(2,5,6). In addition,
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Figure 6: The least-area synthesized architectures from the behavioral modeling of (a)
The exponentiation computation block using 3-input XOR gares. (b) The subfield inverter
block using an OAI32 (OR-AND-Invert) compound gate.

whenever codes from behavioral modeling is used, we test the circuit as a single module
versus three separate modules. Notation for the resultant codes, along with the ASIC
implementation results are listed in Table 7.

The results show that the fastest circuit for the composite field inversion is built using
structural modeling in each block of the S-box (Code#9). The most lightweight circuit is
found by using the behavioral modeling of both the exponentiation block and the subfield
inverter, along with the structural modeling of the output multipliers (Code#12).

7.2 Behavioral Modeling of the Input/Output Transformation Blocks
Here, we apply the same evaluation methodology against the input and output transfor-
mation blocks, and list the results in Table 8.

For structural coding of the input transformation block, we used the formulations
presented in Table 3a and Table 4a (Code#15 and Code#16, respectively). In addition,
we evaluated the behavioral modeling based on (15) (Code#17). It is interesting to see
that our lightweight structural design has the least area and our fast design has the lowest
delay. In fact, our fast design achieves a smaller area than the behavioral modeling. These
results validate our logic-minimization algorithms (presented in Sec. 4).
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Analysis of the output transformation block goes along the same line. We evaluated
the structural modeling following Table 3b and Table 4b, along with the behavioral
modeling using (16). Similarly, our structural modeling significantly outperforms behavioral
modeling.

Table 8: ASIC synthesis results for the input and transformation matrix blocks.

Trans. Code Implementation Table Area Delay Power
Block # Equ. (#) µm2 GE ns µW

Input 15 Str. Light. Table 3a 79.04 38 0.266117 6.1824
Tin 16 Str. Fast Table 4a 99.84 48 0.166328 6.9038

17 Behavioral (15) 120.64 58 0.205561 6.9460
Output 18 Str. Light. Table 3b 66.56 32 0.307335 5.779

Tout 19 Str. Fast Table 4b 87.36 42 0.155989 5.5278
20 Behavioral (16) 95.68 46 0.190978 5.6164

8 Implementation Results and Comparison
The overall implementation results are proposed in Table 9. We propose two lightweight
cores: the all-structural and the combined cores. The combined core is preferred if the
underlying technology library supports the XOR3 and OAI32 used in its design. Otherwise,
the all-structural core should be used. The effect of target technology library will be
detailed in Sec. 8.3. In addition, we propose the all-structural fast core. We include the
all-behavioral code for reference.

Logic synthesis was done using VHDL as a design entry to the Synopsys Design
Vision R©. The technology library used was STM 65-nm CMOS standard library and the
CORE65LPSVT standard cell library which is optimized for low power applications. The
area, delay and power for all the considered S-boxes are generated by the CAD tool with
relaxed constraints at a clock frequency of 100 MHz.

Table 9: ASIC synthesis results for the proposed S-box architectures.

Architecture Code Using Area Delay Power
# codes µm2 GE ns µW

All-Str. Light. (Prop._a) 21 8,15,18 391.04 188 1.080835 39.930
Comb. Light. (Prop._b) 24 12,15,18 379.08 182.25 1.197698 38.085
All-Str. Fast (Prop.) 22 9,16,19 432.64 208 0.779697 42.750

All-Behavioral 23 10,17,20 452.92 217.75 1.004363 42.259

8.1 Comparisons of the Space and Time Complexities
In this section, we compare the space and time complexities of the proposed lightweight
and fast S-box architectures against the fastest and most compact S-boxes available in the
literature. In addition, we propose structural improvements to these architectures.

Tables 10 and 11 provide the gate count and time delay of five S-boxes and compare
them with the proposed architectures. We chose two of the most lightweight schemes,
namely Canright [Can05a, Can05b], and the 113-gate design in [Boy16], which was found
using the Boyar-Peralta heuristic [BP10] while exhaustively searching through all the ties.
In addition, we chose three of the fastest schemes, namely the two Boyar et al. designs
in [BP12] and [BFP17], along with the Ueno et al. design [UHS+15]. The space complexity
comparison of fast designs helps in detecting where the speed improvements came from
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Table 10: Space complexity comparison of different S-boxes (X=XOR2/XNOR2,
X3=XOR3, A=AND2, O=OR2, ND=NAND2, N3=NAND3, OAI=OAI32, NR=NOR2,
NT=NOT).

S-boxes Gate count GEX X3 A O ND N3 OAI NR NT

Li
gh

tw
ei
gh

t Canright [Can05b] 80 - - - 34 - - 6 - 200
Boyar-Op113 [Boy16] 81 - 32 - - - - - - 202
Imp. Boyar-Op113 81 - - - 32 - - - - 194

All-Str. Light. (Prop._a)1 69 - - - 39 4 - 3 4 188
Comb. Light. (Prop._b) 63 3 - - 27 - 4 7 4 182.25

Fa
st

Boyar-Dp16-1 [BP12] 94 - 34 - - - - - - 230.5
Imp. Boyar-Dp16-1 94 - - - 30 - - 4 - 222

Boyar-Dp16-2 [BFP17] 91 - 34 - - - - - - 224.5
Imp. Boyar-Dp16-22 91 - - - 30 - - 4 - 216
Ueno et al. [UHS+15] 91 - 38 16 - - - - 4 256.5

Imp. Ueno3 91 - - - 35 4 - 13 4 238
All-Str. Fast (Proposed)1 79 - - - 39 4 - 3 4 208

1See Table 5 for the details.
2See Appendix C (Table 16) for the improved formulations.
3See Appendix C (Table 15) for the improved formulations.

and also in validating the CAD tool results. To the best of our knowledge, these schemes
are the most lightweight and the fastest S-boxes available in the literature to date.

The gate count for Canright S-box is obtained from [Can05a] and [Can05b]. Let us
denote the 113-gate design in [Boy16] as Boyar-Op113, the 16-depth circuit, with 128
gates in [BP10] as Boyar-Dp16-1, and the new 16-depth circuit, with 125 gates in [BFP17]
(which is available in [Boy16]) as Boyar-Dp16-2.

The Boyar-Op113 scheme requires 113 gates (81 XOR with 32 AND operations). The
Boyar-Dp16-1 scheme uses 94 XOR2/XNOR2 with 34 AND operations, while the Boyar-
Dp16-2 scheme uses 91 XOR2/XNOR2 with 34 AND operations. As mentioned earlier, it is
cheaper and faster to use NAND gates instead of AND gates in the ASIC implementations.
Therefore, we improved these schemes by changing the AND gates to NAND gates and
tracing the results of such changes by replacing some XOR to XNOR and some XNOR to
XOR. We also used Boolean algebra whenever the input of an AND gate is complemented
to change the AND gate to a NOR gate. To adjust the complement of the other AND input,
we moved its complement to the gate that generates it and again trace the complement
of this gate to all the other gates. At the end, we verified correctness of the improved
schemes by our test benches and using the CAD tools. The exact formulations that we
used for the improved S-boxes are included in Appendix C. Formulations listed in Table 16
of the Improved Boyar-Dp16-2 can be used to derive the formulations of the Improved
Boyar-Dp16-1, as they share the same nonlinear circuit.

The gate count of the original Boyar-Op113 [Boy16], the Boyar-Dp16-1 [BP12], and
the Boyar-Dp16-2 [BFP17] schemes as well as those of the improved schemes are presented
in Table 10. In Table 10, we also provided the GE for all S-box architectures using the
corresponding GE of the gates from the CMOS 65 nm technology. In our GE calculations,
we used XOR2/XNOR2 (2 GEs), AND2 (1.25 GEs), OR2 (1.25 GEs), NAND2 (1 GE),
NAND3 (1.25 GEs), NOR2 (1 GE), and NOT (0.75 GEs).

The gate count of the GF ((24)2) inversion of the original scheme proposed by Ueno et
al. is provided in [UHS+15] as [51 XOR2 + 38 AND2 + 16 OR2 + 4 NOT] gates. However,
no information regarding the gate counts of the input matrix (denoted by ∆f in their
paper) and output matrix (denoted by ∆l in their paper) is provided in the paper. We
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Table 11: Time complexity comparison of different S-boxes (X=XOR2/XNOR2,
X3=XOR3, A=AND2, O=OR2, ND=NAND2, N3=NAND3, OAI=OAI32, NR=NOR2,
NT=NOT).

Design S-boxes CPD

Li
gh

tw
ei
gh

t Canright [Can05b] 19DX + 3DND + 1DNR

Boyar-Op113 [Boy16] 21DX + 6DA

Improved Boyar-Op113 21DX + 6DND

All-Str. Light. (Prop._a)1 16DX + 4DND + 1DNT

Comb. Light. (Prop._b) 15DX + 1DX3 + 1DND + 1DOAI + 1DNT

Fa
st

Boyar-Dp16-1 [BP12] 14DX + 2DA

Improved Boyar-Dp16-1 14DX + 1DND + 1DNR

Boyar-Dp16-2 [BFP17] 13DX + 3DA

Improved Boyar-Dp16-22 14DX + 2DA

Ueno et al. [UHS+15] 11DX + 3DA + 1DO

Improved Ueno3 10DX + 4DND + 1DN3 + 1DNT

All-Str. Fast (Proposed)1 11DX + 5DND + 1DNT
1See Table 5 for the details.
2See Appendix C (Table 16) for the improved formulations.
3See Appendix C (Table 15) for the improved formulations.

drove the gate counts of the input and output matrices (14 and 26) to minimize the total
number of XOR2/XNOR2 gates needed in these blocks. Most importantly, we made sure
the delays of these transformation matrices are the same as the ones proposed in [UHS+15],
namely 2DX and 3DX , respectively. As a result, the delay of the entire S-box remains the
same as the one proposed in [UHS+15], i.e., 11DX + 3DA + 1DO. The same critical path
delay (CPD) was obtained by the CAD tool after coding the original Ueno et al. [UHS+15]
S-box architecture in VHDL. Since the original Ueno et al. used several AND gates, we
improved the design using NAND gates by changing the corresponding formulations of all
stages and blocks in their architecture. We provide the details of the new formulations in
Appendix C, Table 15. As one can see from Table 10, our proposed Lightweight and Fast
schemes have the least GE, as compared with their counterparts.

The CPD of those schemes are also compared with the proposed ones in Table 11.
These delays are obtained from the corresponding papers and are also verified by the
codes. More importantly, we used the CAD tool to provide the CPD in terms of the
number and type of gates. The results from the CAD tool match the ones provided in the
corresponding papers except for the Boyar-Op113 scheme which is reduced to the depth
of 27 from the depth of 28 mentioned in [BFP17]. The CPD and the gate count for the
improved schemes are derived by analysis of the improved formulations, and verified using
the CAD tool. As seen from Table 11, our proposed lightweight S-box is faster than other
lightweight schemes, namely Canright, Boyar-Op113 and the improved Boyar-Op113. Also,
our proposed Fast S-box is faster than five other fast schemes and comparable with our
improved version of the Ueno S-box.

8.2 ASIC Implementations and Comparisons
We coded all the above-mentioned S-boxes (original and improved ones) in VHDL and
present their ASIC results in Table 12. For each and every code, we verified the codes by
testing the S-box test benches using Modelsim R©.

The original code for the Canright scheme was obtained from [Can05a], where they
provide a behavioral modeling (in Verilog) for the combined S-box/inverse S-box core. We
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Table 12: ASIC comparisons of the S-box architectures.

S-box Code Area Delay Power Area-Time
# µm2 GE ns µW product

Canright_Beh. [Can05b] 25 433.68 208.5 1.287395 42.125 268.422
Canright_Str. 26 416 200 1.252811 41.023 250.562

Boyar-Op113 [Boy16] 27 420.16 202 1.522775 39.365 307.601
Improved Boyar-Op113 28 403.52 194 1.34606 40.471 261.136
All-Str. Light. (Prop._a) 21 391.04 188 1.080835 39.930 203.20
Comb. Light. (Prop._b) 24 379.08 182.25 1.197698 38.085 218.28
Boyar-Dp16-1 [BP12] 29 479.44 230.5 0.960458 44.020 221.386

Improved Boyar-Dp16-1 30 461.76 222 0.905652 44.797 201.055
Boyar-Dp16-2 [BFP17] 31 466.96 224.5 0.956535 42.724 214.742
Improved Boyar-Dp16-21 32 449.28 216 0.911743 43.645 196.936
Ueno et al. [UHS+15] 33 533.52 256.5 0.831007 48.178 213.153
Improved Ueno et al.2 34 495.04 238 0.772424 49.609 183.837

All-Str. Fast (Proposed) 22 432.64 208 0.779697 42.750 162.177
1See Appendix C (Table 16) for the improved formulations.
2See Appendix C (Table 15) for the improved formulations.

revised it, with minimal changes, to a behavioral modeling of an S-box-only core, leading
to a hardware cost of 208.5 GEs (denoted Canright_Beh. in the table). Then, we wrote a
structural code following the formulations written in the paper, in order to exactly match
the hardware complexity provided in the report, leading to a hardware cost of 200GEs
(denoted Canright_Str. in the table). Note that in [KR12], the authors mention that the
Boyar-Peralta S-box [BP10] can be implemented in 193.8 GEs by converting AND gates
to NAND gates, but they did not detail on the exact equations used.

The results listed in Table 12 show that the proposed combined lightweight design is the
smallest, fastest, lowest power consumption, and most efficient (measured by area×delay)
S-box design in this category to date. The all-structural lightweight design, as proposed
in this paper, has a slightly less delay and better overall efficiency for a slight higher
implementation area. Similarly, the proposed all-structural fast design is the smallest,
fastest (in almost a tie with our improved version of the Ueno S-box), lowest power
consumption, and most efficient S-box design in this category to date.

8.3 Discussion on the Effect of Target Technology Library
Our design concept depends on testing the behavioral modeling on the target technology
library against the structural modeling of every block to ensure best usage of the available
gates. Following this concept, we tested all the codes under different libraries ([Nan, VTV,
NG00]) and found that the results are in-line with Table 12.

The industrial technology libraries, e.g., STM and TSMC, support the XOR3 and OAI32
gates that are used in the proposed combined lightweight design, targeting 182.25 GEs.
However, other open-source/educational libraries, e.g., the NanGate [Nan], VTVT [VTV]
and WPI [NG00] libraries, may not support the XOR3 and/or the OAI32 gates. As a result,
behavioral modeling under these technology libraries may lead to a different combined
lightweight design.

As a concrete example, we tested the behavioral modeling of the proposed S-box against
the NanGate45nm library. NanGate45nm library does not support the XOR3 and OAI32
gates, but supports AOI12 and OAI12 gates instead. As a result, the CAD tool reported a
lightweight design of 186 GEs, instead of 182.25 GEs. The exact hardware complexity of a
combined lightweight S-box under the NanGate45nm library is [69 XOR2 + 31 NAND2 +



Arash Reyhani-Masoleh, Mostafa Taha and Doaa Ashmawy 329

7 OAI21 + 1 AOI21 + 3 NOR2 + 5 NOT], that can be compared to Table 10.
In any case, the all-structural lightweight and fast S-box designs do not require any

compound gate, only simple 2-input gates and NAND3. Hence, these designs are supported
by all the technology libraries that we aware of and serve as a fallback choice if the target
technology library does not support any compound gate.

If the 4 NAND3 gates in Figure 4 are not allowed in the design, e.g., for theoretical
comparison against previous work, we may replace each NAND3 gate (1.25 GEs) by one
NAND2 and one NOR2 gates (1+1=2 GEs), where the inputs of the NOR2 should be
complemented with no cost. Since we use 4 NAND3 gates in each designs (see Table 10),
the all-structural lightweight and all-structural fast designs would require 191 and 211
GEs, respectively. These designs can be implemented using the same type of gates that
are used by previous work.

9 Conclusions and Future Work
The contributions proposed in this paper are manyfold. We have proposed two new designs
for the AES S-box that break all the current implementation records in the two design
criteria of lightweight and fast, to the best of our knowledge. We have also introduced
several improvements to the current logic-minimization heuristics and proposed three new
ones. More importantly, we have demonstrated that optimum ASIC designs can only be
achieved through a perfect synergy between theoretical analysis and technology-assisted
CAD tools. Our extensive analysis and exhaustive ASIC implementations show that
the proposed lightweight and fast architectures outperform in terms of area, delay and
efficiency as compared to the best S-box architectures available in the literature.

As a future research direction, we will investigate if a combined S-box/inverse S-box
design using composite field architecture over GF ((24)2), as proposed in this paper, can
outperform the combined S-box/inverse S-box designs under tower field architecture over
GF (((22)2)2) as proposed in [Can05b] and [RTA18]. In addition, we will investigate
designing full AES encryption and/or decryption engines, where the field conversion
mappings happen only at the data and key inputs and data output. In this case, we may
save the repetitive field conversion mappings that happen at the input and output of each
SubBytes operation as proposed in this paper.
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Appendix A: Proof of Lemma 2
Proof. The subfield inverter is a combinational circuit which can be explained by its
truth table. The truth table of the inverter is shown in Table 13, which was calculated
for each subfield element and then verified by our multiplication formulations coding in
MATLAB R©. Then, from the e0 column, one can represent e0 as an OR operation (∨) of
the corresponding minterms, i.e.,

e0 = m2 ∨m3 ∨m5 ∨m6 ∨m7 ∨m11 ∨m12 ∨m15
= (m12 ∨m5) ∨ (m2 ∨m3 ∨m6 ∨m7) ∨ (m3 ∨m7 ∨m11 ∨m15). (29)

One can simplify the first term of (29) as m12 ∨m5 = d0d1d
′
2d
′
3 ∨ d′0d1d

′
2d3 = d1d

′
2(d0d

′
3 ∨

d′0d3) = d1d
′
2(d0 ⊕ d3). Also, the second and third terms of (29) can be simplified as

m2 ∨m3 ∨m6 ∨m7 = d′0d2 and m3 ∨m7 ∨m11 ∨m15 = d2d3, respectively. Therefore,
e0 = d1d

′
2(d0 ⊕ d3) ∨ d′0d2 ∨ d2d3 = d1d

′
2(d0 ⊕ d3) ∨ d2(d′0 ∨ d3).

If the input is changed from D = (d0d1d2d3) =
∑3

i=0 diβ
2i to its left cyclic shift

D′ = D2−1 =
∑3

i=0 diβ
2i−1 = (d1d2d3d0), then its inverse at the output will be changed

from E = (e0e1e2e3) = D−1 to E′ = (D′)−1 = (D2−1)−1 = (D−1)2−1 = (e1e2e3e0). In
other words, the cyclic shifts at the inverse input will result in the same cyclic shifts
at its output. Let us denote the 0th coordinate of E = (e0e1e2e3) as the function
e0 = I(d0d1d2d3) in terms of its input D = (d0d1d2d3) (see the formulation presented in
Lemma 2 for the details of the Boolean function I). Then, the bit 0 of E′ = (e1e2e3e0), i.e.,
e1, is obtained when the input is D′ = (d1d2d3d0). Therefore, one can find e1 = I(d1d2d3d0)
and so other coordinates of E = D−1, say ei, for 1 ≤ i ≤ 3, can be found similarly by
adding (i modulo 4) with D, i.e., ei = I(didi+1di+2di+3). This is similar to to the idea
proposed in [MO86, WTS+85, RH02] for multiplication operation.

Replacing D = (d0d1d2d3) by D = (didi+1di+2di+3) concludes the proof.

Table 13: The truth table of the inverter over GF (24) generated by the ONB-I.

d0d1d2d3 e0e1e2e3 d0d1d2d3 e0e1e2e3

0000
0001
0010
0011
0100
0101
0110
0111

0000
0100
1000
1110
0001
1010
1101
1001

1000
1001
1010
1011
1100
1101
1110
1111

0010
0111
0101
1100
1011
0110
0011
1111

http://www.vtvt.ece.vt.edu/vlsidesign/cell.php
http://www.vtvt.ece.vt.edu/vlsidesign/cell.php
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Appendix B: Other formulations for the subfield inverter

The 12 formulations that were considered in order to obtain the best subfield inverter
circuits are as follows:
Code# 35: ei = (di+1d

′
i+2(di ⊕ di+3)) ∨ (di+2(d′i ∨ di+3)).

Code# 36: ei = ((di+1d
′
i+2(di ⊕ di+3))′(di+2(did

′
i+3)′)′)′.

Code# 37: ei = ((di ∨ di+3)(didi+3)′(di+1d
′
i+2)) ∨ ((d′i ∨ di+3)di+2).

Code# 38: ei = (((di ∨ di+3)(didi+3)′(d′i+1 ∨ di+2)′)′((did
′
i+3)′di+2)′)′.

Code# 39: ei = (didi+1d
′
i+2d

′
i+3) ∨ (d′idi+1di+3) ∨ ((d′i ∨ di+3)di+2).

Code# 40: ei = ((didi+1d
′
i+2d

′
i+3)′(d′idi+1di+3)′((did

′
i+3)′di+2)′)′.

Code# 41: ei = ((d′i+1d
′
i+2) ∨ (didi+2d

′
i+3) ∨ (did

′
i+2di+3) ∨ (d′id′i+2d

′
i+3))′.

Code# 42: ei = ((di+1∨di+2)′∨(d′i∨d′i+2∨di+3)′∨(d′i∨di+2∨d′i+3)′∨(di∨di+2∨di+3)′)′.
Code# 43: ei = (di+1 ∨ di+2)(d′i ∨ d′i+2 ∨ di+3)(d′i ∨ di+2 ∨ d′i+3)(di ∨ di+2 ∨ di+3).
Code# 44: ei = (di+2 ⊕ (didi+2d

′
i+3)) ∨ ((di ⊕ di+3)di+1d

′
i+2).

Code# 45: ei = ((di+2 ⊕ (didi+2d
′
i+3)′)((di ⊕ di+3)di+1d

′
i+2)′)′.

Code# 46: ei = di+2 ⊕ (didi+2d
′
i+3)′ ⊕ ((di ⊕ di+3)di+1d

′
i+2)′.

Table 14: Synthesis results of different formulations for one bit of the subfield inverter.

Code Area Delay Power
# µm2 GE ns nW

35 19.76 9.5 0.09 550.7
36 (proposed) 16.12 7.75 0.07 493.24

37 23.4 11.25 0.10 581.8
38 19.24 9.25 0.06 515.9
39 22.88 11 0.11 510.15
40 19.24 9.25 0.08 463.88
41 24.96 12 0.10 575.12
42 19.76 9.5 0.09 440.01
43 23.92 11.5 0.08 514.45
44 21.84 10.5 0.10 590.07
45 18.72 9 0.09 493.52
46 20.28 9.75 0.12 472.28
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Appendix C: Improved S-box Architectures

Table 15: Formulations of the improved Ueno S-box (the original S-box is in [UHS+15]).

Stage 1
d0 = ((h1 ⊕ h2) ∨ (l1 ⊕ l2))′ ⊕ ((h3 ⊕ h4) ∨ (l3 ⊕ l4))′ ⊕ (h2 ∨ l2)′ ⊕ (h3l3)′
d1 = ((h1 ⊕ h2) ∨ (l1 ⊕ l2))′ ⊕ ((h1 ⊕ h3)(l1 ⊕ l3))′ ⊕ (h3 ∨ l3)′ ⊕ (h4 ∨ l4)′

d2 = ((h1 ⊕ h3) ∨ (l1 ⊕ l3))′ ⊕ ((h1 ⊕ h4)(l1 ⊕ l4))′ ⊕ ((h2 ⊕ h3) ∨ (l2 ⊕ l3))′ ⊕ (h4 ∨ l4)′
d3 = ((h1 ⊕ h4) ∨ (l1 ⊕ l4))′ ⊕ ((h2 ⊕ h3) ∨ (l2 ⊕ l3))′ ⊕ ((h2 ⊕ h4)(l2 ⊕ l4))′ ⊕ (h1 ∨ l1)′

d4 = ((h2 ⊕ h4) ∨ (l2 ⊕ l4))′ ⊕ ((h3 ⊕ h4) ∨ (l3 ⊕ l4))′ ⊕ (h1 ∨ l1)′ ⊕ (h2l2)′

Stage 2
e0 = ((d1 ∨ d4)′ ∨ (d2 ∨ d3)′)′

e1 = ((d′4(d1 ⊕ d2))′(d0d4(d′2d′3)′)′)′
e2 = ((d′3(d2 ⊕ d4))′(d0d3(d′1d′4)′)′)′
e3 = ((d′2(d1 ⊕ d3))′(d0d2(d′1d′4)′)′)′
e4 = ((d′1(d3 ⊕ d4))′(d0d1(d′2d′3)′)′)′

Stage 3
ho

0 = ((l1 ⊕ l4)(e1 ⊕ e4))′ ⊕ ((l2 ⊕ l3)(e2 ⊕ e3))′
ho

1 = (l1(e0 ⊕ e1))′ ⊕ ((l2 ⊕ l4)(e2 ⊕ e4))′
ho

2 = (l2(e0 ⊕ e2))′ ⊕ ((l3 ⊕ l4)(e3 ⊕ e4))′
ho

3 = (l3(e0 ⊕ e3))′ ⊕ ((l1 ⊕ l2)(e1 ⊕ e2))′
ho

4 = (l4(e0 ⊕ e4))′ ⊕ ((l1 ⊕ l3)(e1 ⊕ e3))′
lo0 = ((h1 ⊕ h4)(e1 ⊕ e4))′ ⊕ ((h2 ⊕ h3)(e2 ⊕ e3))′

lo1 = (h1(e0 ⊕ e1))′ ⊕ ((h2 ⊕ h4)(e2 ⊕ e4))′
lo2 = (h2(e0 ⊕ e2))′ ⊕ ((h3 ⊕ h4)(e3 ⊕ e4))′
lo3 = (h3(e0 ⊕ e3))′ ⊕ ((h1 ⊕ h2)(e1 ⊕ e2))′
lo4 = (h4(e0 ⊕ e4))′ ⊕ ((h1 ⊕ h3)(e1 ⊕ e3))′
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Table 16: Formulations of the improved Boyar-Dp16-2 S-box. The original S-box is found
from [BFP17] with formulations from [Boy16]. In this table, we use lower case letters, e.g.,
t44, to represent the complemented signals as compared to the original signals which are
represented with capital letters, e.g., T44 = (t44)′.

T1 ← U6 ⊕ U4 1DX T59 ← T46 � t45 5DX t101 ← (T86T7)′ 10DX + 2DND

T2 ← U3 ⊕ U0 1DX T60 ← T48 ⊕ T42 5DX + 1DND t102 ← (T81T9)′ 9DX + 2DND

T3 ← U1 ⊕ U2 1DX T61 ← T51 � t50 5DX t103 ← (T80T22)′ D3
T4 ← U7 ⊕ T3 2DX T62 ← T53 ⊕ T58 5DX + 1DND t104 ← (T85T2)′ D4
T5 ← T1 ⊕ T2 2DX T63 ← T59 ⊕ T56 6DX t105 ← (T88T41)′ 11DX + 2DND

T6 ← U1 ⊕ U5 1DX T64 ← T60 ⊕ T58 6DX + 1DND t106 ← (T84T16)′ 10DX + 2DND

T7 ← U0 ⊕ U6 1DX T65 ← T61 ⊕ T56 6DX T107 ← t104 ⊕ t105 12DX + 2DND

T8 ← T1 ⊕ T6 2DX T66 ← T62 ⊕ T43 6DX + 1DND T108 ← t93 ⊕ t99 10DX + 2DND

T9 ← U6 ⊕ T4 3DX t67 ← T65 � T66 7DX + 1DND T109 ← t96 � T107 13DX + 2DND

T10 ← U3 ⊕ T4 3DX t68 ← (T65T63)′ 6DX + 1DND T110 ← t98 � T108 11DX + 2DND

T11 ← U7 ⊕ T5 3DX t69 ← T64 ⊕ t68 7DX + 1DND T111 ← t91 ⊕ t101 11DX + 2DND

T12 ← T5 ⊕ T6 3DX t70 ← T63 � T64 7DX + 1DND T112 ← t89 ⊕ t92 11DX + 2DND

T13 ← U2 ⊕ U5 1DX t71 ← T66 ⊕ t68 7DX + 1DND T113 ← T107 ⊕ T112 13DX + 2DND

T14 ← T3 ⊕ T5 3DX T72 ← (t71 ∨ t70)′ D0a T114 ← t90 � T110 12DX + 2DND

T15 ← U5 ⊕ T7 2DX T73 ← (t69 ∨ t67)′ D0 T115 ← t89 ⊕ t95 11DX + 2DND

T16 ← U0 ⊕ U5 1DX t74 ← (T63T66)′ 6DX + 2DND T116 ← t94 ⊕ t102 10DX + 2DND

T17 ← U7 ⊕ T8 3DX T75 ← (t70 ∨ t74)′ D0 T117 ← t97 ⊕ t103 11DX + 2DND

T18 ← U6 ⊕ U5 1DX T76 ← t70 ⊕ t68 8DX + 1DND T118 ← t91 � T114 13DX + 2DND

T19 ← T2 ⊕ T18 2DX t77 ← (T64T65)′ 6DX + 2DND T119 ← T111 ⊕ T117 12DX + 2DND

T20 ← T4 ⊕ T15 3DX T78 ← (t67 ∨ t77)′ D0 T120 ← t100 � T108 11DX + 2DND

T21 ← T1 ⊕ T13 2DX T79 ← t67 ⊕ t68 8DX + 1DND T121 ← t92 ⊕ t95 11DX + 2DND

T22 ← U0 ⊕ T4 3DX T80 ← T64 ⊕ T72 D1b T122 ← T110 ⊕ T121 12DX + 2DND

T39 ← T21 ⊕ T5 3DX T81 ← T75 ⊕ T76 9DX + 1DND T123 ← t106 � T119 13DX + 2DND

T40 ← T21 ⊕ T7 3DX T82 ← T66 ⊕ T73 D1 T124 ← t104 � T115 12DX + 2DND

T41 ← T7 ⊕ T19 3DX T83 ← T78 ⊕ T79 9DX + 1DND T125 ← T111 ⊕ T116 12DX + 2DND

T42 ← T16 ⊕ T14 4DX T84 ← T83 ⊕ T81 10DX + 1DND S0 ← T109 ⊕ T122 14DX + 2DND

T43 ← T22 ⊕ T17 4DX T85 ← T80 ⊕ T82 D2d S2 ← T123 � T124 14DX + 2DND

t44 ← (T19T5)′ 2DX + 1DND T86 ← T80 ⊕ T81 10DX + 1DND T128 ← t94 � T107 13DX + 2DND

t45 ← (T20T11)′ 3DX + 1DND T87 ← T82 ⊕ T83 10DX + 1DND S3 ← T113 ⊕ T114 14DX + 2DND

T46 ← T12 � t44 4DX T88 ← T85 ⊕ T84 11DX + 1DND S4 ← T118 ⊕ T128 14DX + 2DND

t47 ← (T10U7)′ 3DX + 1DND t89 ← (T87T5)′ 10DX + 2DND T131 ← t93 ⊕ t101 11DX + 2DND

T48 ← t47 ⊕ t44 4DX + 1DND t90 ← (T83T11)′ 9DX + 2DND T132 ← T112 ⊕ T120 12DX + 2DND

t49 ← (T7T21)′ 2DX + 1DND t91 ← (T82U7)′ D3c S7 ← T113 � T125 14DX + 2DND

t50 ← (T9T4)′ 3DX + 1DND t92 ← (T86T21)′ 10DX + 2DND T134 ← t97 � T116 11DX + 2DND

T51 ← T40 � t49 4DX t93 ← (T81T4)′ 9DX + 2DND T135 ← T131 ⊕ T134 12DX + 2DND

t52 ← (T22T17)′ 3DX + 1DND t94 ← (T80T17)′ D3 T136 ← t93 � T115 12DX + 2DND

T53 ← t52 ⊕ t49 4DX + 1DND t95 ← (T85T8)′ D4e S6 ← T109 � T135 14DX + 2DND

t54 ← (T2T8)′ 2DX + 1DND t96 ← (T88T39)′ 11DX + 2DND T138 ← T119 ⊕ T132 13DX + 2DND

t55 ← (T41T39)′ 3DX + 1DND t97 ← (T84T14)′ 10DX + 2DND S5 ← T109 ⊕ T138 14DX + 2DND

T56 ← t55 ⊕ t54 4DX + 1DND t98 ← (T87T19)′ 10DX + 2DND T140 ← T114 ⊕ T136 13DX + 2DND

t57 ← (T16T14)′ 3DX + 1DND t99 ← (T83T20)′ 9DX + 2DND S1 ← T109 � T140 14DX + 2DND

T58 ← t57 ⊕ t54 4DX + 1DND t100 ← (T82T10)′ D3

aD0 = 7DX + 1DND + 1DNR
dD2=9DX + 1DND + 1DNR

eD4 = 9DX + 2DND + 1DNR
bD1 = 8DX + 1DND + 1DNR

cD3 = 8DX + 2DND + 1DNR
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